Dispatch Signal &
Locational Marginal Pricing (LMP)
Objectives

Students will be able to:

• Identify how PJM dispatches & utilizes LMP
Dispatch Rate

Definition:
The **Dispatch Rate** is expressed in dollars per MWh, calculated and transmitted to each generator to direct the output level of all generation resources dispatched by PJM based on the incremental offer data which was previously received from the Generators.

Where PJM wants The units to be loaded economically
The **Dispatch Rate** is determined by the PJM economic dispatch solution as calculated by PJM’s Security Constrained Economic Dispatch program (SCED).

The **Economic Basepoint** is the MW value sent to the generating unit that indicates to what level the unit should be loaded based on the economic dispatch solution and the units incremental price curve.
Moving the fleet!

Dispatch Rate: $40 Economic Basepoint?

Economic Max

Emergency Max

Economic Min

Emergency Min

Start Up & No Load Range
Transmission Losses

• Real Power (MW) Losses
 – Power flow converted to heat in transmission equipment
 – Heat produced by current (I) flowing through resistance (R)
 – Losses equal to I^2R
 – Heat loss sets the “thermal rating” of equipment

$Heat\ Disipated = I^2R$
Transmission Losses

• Real Power (MW) Losses
 – Increase with line length
 • Increased R
 – Increase with increased current flow (I)
 – Increase at lower voltages
 • Higher currents

\[
\text{Transmission Losses} = \text{Power} \times \frac{\text{Current}}{\text{Voltage}}
\]
Transmission Losses

Power In: 100 MW
Voltage In: 235 KV
Current In: 425.53 A

Power Out: 90.946 MW
Voltage out: 213.72 KV
Current Out: 425.53 A

Power Loss: 9.054 MW
Transmission Losses

Power In: 100 MW
Voltage In: 235 KV
Current In: 425.53 A

Power Out: 98.2 MW
Voltage out: 230.74 KV
Current Out: 425.53 A

Power Loss: 1.8 MW
Penalty Factors Effect on Dispatch

• The Incremental Loss for bus i is used to calculate a factor that can be used to include the effect of losses in the dispatch

• This factor is called the Loss Penalty Factor, or Penalty Factor

\[
Pf_i = \frac{1}{1 - \frac{\Delta P_L}{\Delta P_i}}
\]

Change in Losses
Change in Unit’s MW Output

• The Penalty Factors adjust the incremental cost of each generator so as to include the effects of losses

• Penalty factors applied to each and every location
 – Including generation, load, virtual transaction
Penalty Factors Effect on Dispatch

• If an increase in generation results in an increase in system losses then:
 - Penalty factor is greater than 1
 - Units offer curve is adjusted higher
 • Unit offer curve is multiplied by penalty factor
 • Unit looks less attractive to dispatch

Loss Factor

\[0 < \frac{\Delta P_L}{\Delta P_i} < 1 \]

Penalty Factor

\[Pf_i = \frac{1}{1 - \frac{\Delta P_L}{\Delta P_i}} > 1.0 \]

Increase in injection will result in higher overall system losses
Penalty Factors Effect on Dispatch

If an increase in generation results in a decrease in system losses then:

- Penalty factor is less than 1
- Units offer curve is adjusted lower

 - Unit offer curve is multiplied by penalty factor
 - Unit looks more attractive to dispatch
 - Total LMP would still at least equal unit’s original offer

\[
0 > \frac{\Delta P_L}{\Delta P_i} > -1
\]

Increase in injection will result in lower overall system losses

\[
Pf_i = \frac{1}{1 - \left(\frac{\Delta P_L}{\Delta P_i}\right)} < 1.0
\]
Generating Unit # 1

<table>
<thead>
<tr>
<th>Offer Price</th>
<th>MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10.00</td>
<td>200 MW</td>
</tr>
<tr>
<td>$20.00</td>
<td>300 MW</td>
</tr>
<tr>
<td>$30.00</td>
<td>400 MW</td>
</tr>
<tr>
<td>$40.00</td>
<td>500 MW</td>
</tr>
</tbody>
</table>

Generating 300 MW

- **Penalty Factor = 1.000**
 - \(20 \times 1 = 20.00\)

Generating Unit # 2

<table>
<thead>
<tr>
<th>Offer Price</th>
<th>MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10.00</td>
<td>200 MW</td>
</tr>
<tr>
<td>$20.00</td>
<td>300 MW</td>
</tr>
<tr>
<td>$30.00</td>
<td>400 MW</td>
</tr>
<tr>
<td>$40.00</td>
<td>500 MW</td>
</tr>
</tbody>
</table>

Generating 305 MW

- **Penalty Factor = 0.97**
 - \(20.50 \times 0.97 = 19.89\)
Generation Redispatch

For Contingency Analysis
• Delivery limitations prevent use of “next least-cost generator”
• Higher-cost generator closer to load must be used to meet demand
• Cost expressed as “security constrained redispatch cost”
Security Constrained Re-Dispatch

Control Area
Constrained System

Low Cost Generator
$$

High Cost Generator
$$$$

Higher cost Generator more advantageously located relative to transmission system limit

Transmission “Bottleneck” or Constraint
Contingency Analysis

- “What if" scenario simulator that evaluates, provides and prioritizes the impacts on an electric power system when problems occur.
 - A contingency is a provision for an unforeseen event or circumstance
 - Loss or failure of a small part of the power system (e.g. a transmission line)
 - Loss or failure of individual equipment such as a generator or transformer

- Computer application that uses a simulated model of the power system
 - Evaluates the effects of an outage event
 - Calculates any overloads that may result

- This is referred to as maintaining system security
Contingency Analysis

• Contingency Analysis is essentially a "preview" analysis tool
 – It simulates and quantifies the results of problems that could occur in the power system in the immediate future

• Contingency Analysis is used as a study tool for the off-line analysis of contingency events, and as an on-line tool to show operators what would be the effects of future outages
 – This allows operators to be better prepared to react to outages by using pre-planned recovery scenarios.
How Contingency Analysis Works

• Executes a power flow analysis for each potential problem that is defined on a contingency list
 – A contingency list contains each of the elements that will be removed from the network model, one by one, to test the effects for possible overloads of the remaining elements
 – The failure or outage of each element in the contingency list is simulated in the network model by removing that element
 – The resulting network model is solved to calculate the resulting power flows, voltages, and currents for the remaining elements of the model
• Review available controlling actions and the distribution factor (DFAX) effect on the overloaded facility.
 – Consider whether there are sufficient resources available to control transmission facilities within acceptable limits.

• Initiate off-cost if reasonable controlling actions are available

• SCED works best when the impacts are 5% or greater but can still be utilized when only lower DFAX values exist
The $/MW effect on a transmission line is used to determine which units should be redispatched in constrained situations.

$/MW Effect = \frac{\text{System Marginal Price} - \text{Marginal Cost of Unit}}{\text{Unit Shift Factor}}$

- SMP and Marginal Cost of Unit values are the result of optimization.

Units with lowest $/MW effect are used to redispatched when the system is constrained.

Other unit parameters are taken into account (i.e. eco min, eco max, min run time, etc.).
LMP Basics
What is LMP?

- Locational Marginal Price

- Pricing method PJM uses to:
 - price energy purchases and sales in PJM Market
 - price transmission congestion costs to move energy within PJM RTO
 - price losses on the bulk power system

- Physical, flow-based pricing system:
 - how energy actually flows, NOT contract paths
How Does PJM Use LMP?

- Generators get paid at generation bus LMP
- Loads pay at load bus LMP
- Transactions pay differential in source and sink LMP
Locational Marginal Price

- System Marginal Price (SMP)
 - Incremental price of energy for the system, given the current dispatch, at the load weighted reference bus
 - SMP is LMP without losses or congestion
 - Same price for every bus in PJM (no locational aspect)
 - Calculated both in day ahead and real time
Congestion Component (CLMP)

- Represents price of congestion for binding constraints
 - Calculated using the Shadow Price
- Will be zero if no constraints (Unconstrained System)
 - Will vary by location if system is constrained
- Used to price congestion
 - Load pays Congestion Price
 - Generation is paid Congestion Price
- Calculated both in day ahead and real time
Congestion effects on LMP and Revenues

• When the bus is **upstream** of a constraint
 – Congestion Component is **negative**
 – Results in **negative** revenues to unit

• When the bus is **downstream** of a constraint
 – Congestion Component is **positive**
 – Results in **positive** revenues to unit
Marginal Loss Component (MLMP)

• Represents price of marginal losses
 - Transmission losses are priced according to marginal loss factors which are calculated at a bus and represent the percentage increase in system losses caused by a small increase in power injection or withdrawal
 • Calculated using penalty factors
 • Will vary by location
 • Used to price losses
 - Load pays the Loss Price
 - Generation is paid the Loss Price
 • Calculated both in day-ahead and real-time
Marginal Loss effects on LMP and Revenues

• When the bus is electrically **distant** from the load
 – Marginal Loss Component is **negative**
 – Results in **negative** revenues to unit

• When the bus is electrically **close** to the load
 – Marginal Loss Component is **positive**
 – Results in **positive** revenues to unit
LMP Components – Unconstrained System

Installed = 2,000 MW

Dispatch 1500 MW

$20 Power

System Energy Price = $20
Congestion = $ 0
Losses = $ 0
LMP = $20

Loss Penalty Factor = 1.0

Unconstrained Transmission Path

Load + losses = 1500MW

System Energy Price = $20.0
Congestion = $ 0.0
Losses = $ 0.6
LMP= $20.6

Loss Penalty Factor = 0.97

Installed = 700 MW

$50 Power
Constrained System
LMP Components - System Energy Price

Installed = 2,000 MW

Dispatch 1000 MW

$20 Power
Flow = 1000 MW
Limit = 1000 MW
Loss Penalty Factor = 1.0

System Energy Price = $20.0
Congestion =
Losses =
LMP = $20.0

Load + losses = 1500MW

Loss Penalty Factor = 0.97

Dispatch 500 MW

$50 Power
Installed = 700 MW

System Energy Price = $20.0
Congestion =
Losses =
LMP = $20.0
Constrained System
LMP Components - Congestion

Installed = 2,000 MW

Dispatch 1000 MW

$20 Power

Flow = 1000 MW
Limit = 1000 MW
Loss Penalty Factor = 1.0

System Energy Price = $20.0
Congestion = $ 0.0
Losses =
LMP = $20.0

Load + losses = 1500MW
Loss Penalty Factor = 0.97

System Energy Price = $20.0
Congestion = $29.4
Losses =
LMP = $49.4

Dispatch 500 MW

$50 Power

Installed = 700 MW

Installed = 2,000 MW
Constrained System

LMP Components Marginal Losses

Installed = 2,000 MW

Dispatch 1000 MW

- System Energy Price = $20.0
- Congestion = $0.0
- Losses = $0.0
- LMP = $20.0

\[
\text{Flow} = 1000 \text{ MW}
\]

- Limit = 1000 MW

- Loss Penalty Factor = 1.0

Load + losses = 1500MW

Loss Penalty Factor = 0.97

Dispatch 500 MW

- System Energy Price = $50.0
- Congestion = $29.4
- Losses = $0.6
- LMP = $50.0

- Installed = 700 MW

\[
\text{Limit} = 1000 \text{ MW}
\]

\[
\text{Flow} = 1000 \text{ MW}
\]

Loss Penalty Factor = 0.97
Questions?

PJM Client Management & Services
Telephone: (610) 666-8980
Toll Free Telephone: (866) 400-8980
Website: www.pjm.com

The Member Community is PJM’s self-service portal for members to search for answers to their questions or to track and/or open cases with Client Management & Services