Transmission Expansion Advisory Committee

May 9, 2013
Issues Tracking
• Open Issues
 – None

• New Issues
EIPC Update
EIPC – The Beginning

• Formed - April 8, 2009
 – Interconnection-wide modeling and analysis
 – Consistency with regional planning processes
• June 2009 DOE FOA
• Phase I – end of 2011
 – Rollup of regional plans
 – Macroeconomic analysis 90 scenario/sensitivity
 – 3 Scenarios selected
• Phase II – end of 2012
 – Analysis and conceptual transmission for 3 Scenarios
• DOE grant funded gas/electric coordination study
EIPC Transition

- Work heavily driven by DOE and Stakeholders
 - EIPC Coordination Committee (grant work)
 - Stakeholder Steering Committee (SSC)
 - EISPC (1/3 of SSC)
 - Formal SSC structure and decision/voting process
 - EIPC Technical Committee
 - Result was not consistent with regional planning

- Beginning 2013 EIPC developed
 - A new scope of non-grant work
 - More grant funded work - gas/electric infrastructure
EIPC - Two Year *Non-Grant* Work Plan

- **Year one power flow**
 - Model rollups and evaluation year one
 - Procedures from phase one grant work
 - Incorporate any agreed procedure changes
 - Identify issues and solutions
 - Review in regional planning processes

- **Year two scenario analyses**
 - Stakeholder input through regional planning processes
 - Techniques and models under consideration
 - Modeling techniques under discussion
Non-Grant Stakeholder Process

- Separate from Grant activities
- Regional Processes are the foundation
- Regional input will be coordinated by the EIPC TC through a Stakeholder Coordination Subcommittee (SCS) of Planning Coordinators
- PJM will present EIPC non-grant information to TEAC, OPSI and ISAC for review and input
- EIPC will separately outreach to EISPC
 - The EISPC will be the main conduit for PJM states to interact with the non-grant activities.
- Formal process roll-out over next several months
2013 RTEP Analytical Approach
2018 RTEP Power Flow Model
 - Analysis underway

Analytical Progress
 - Baseline contingency analysis
 - Generator deliverability & common mode outage testing

Next Steps
 - Load deliverability, N-1-1
• Neighboring external systems contingencies
 – Coordination with neighboring entities
 – Major update for 2013 RTEP
 – Inclusion in RTEP
Neighboring systems contingencies
- NERC category B & C
- Over 8,000 NERC category B contingencies and 5,000 NERC category C contingencies from all neighboring Planning Coordinators added
2018 CETO Values for use in 2013 RTEP

- Area loads based on 2013 PJM Load Forecast Report
- Cleared DR & EE
- Other Assumptions

<table>
<thead>
<tr>
<th>AREA</th>
<th>2018 CETO (MW)</th>
<th>Change From 2017 CETO (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>1120</td>
<td>-120</td>
</tr>
<tr>
<td>AEP</td>
<td>2260</td>
<td>-790</td>
</tr>
<tr>
<td>APS</td>
<td>1880</td>
<td>-140</td>
</tr>
<tr>
<td>ATSI</td>
<td>4760</td>
<td>-700</td>
</tr>
<tr>
<td>BGE</td>
<td>4030</td>
<td>-50</td>
</tr>
<tr>
<td>Cleveland</td>
<td>3420</td>
<td></td>
</tr>
<tr>
<td>ComEd</td>
<td>2060</td>
<td>-550</td>
</tr>
<tr>
<td>Dayton</td>
<td>1030</td>
<td>420</td>
</tr>
<tr>
<td>Duquesne</td>
<td>1410</td>
<td>-60</td>
</tr>
<tr>
<td>Dominion</td>
<td>-450</td>
<td>-670</td>
</tr>
<tr>
<td>DPL</td>
<td>1090</td>
<td>110</td>
</tr>
<tr>
<td>DPL-S</td>
<td>1650</td>
<td>100</td>
</tr>
<tr>
<td>DUKE OH&KY</td>
<td>3910</td>
<td>-20</td>
</tr>
<tr>
<td>EKPC</td>
<td>770</td>
<td></td>
</tr>
<tr>
<td>JCPL</td>
<td>3440</td>
<td>250</td>
</tr>
<tr>
<td>MetEd</td>
<td>1250</td>
<td>-60</td>
</tr>
<tr>
<td>PECO</td>
<td>2970</td>
<td>130</td>
</tr>
<tr>
<td>PEPCO</td>
<td>2880</td>
<td>0</td>
</tr>
<tr>
<td>PPL</td>
<td>1660</td>
<td>20</td>
</tr>
<tr>
<td>Peneec</td>
<td>1210</td>
<td>0</td>
</tr>
<tr>
<td>PSEG</td>
<td>5820</td>
<td>990</td>
</tr>
<tr>
<td>PSEG North</td>
<td>2240</td>
<td>-190</td>
</tr>
<tr>
<td>Southern MAAC</td>
<td>4540</td>
<td>-100</td>
</tr>
<tr>
<td>Western MAAC</td>
<td>-3880</td>
<td>130</td>
</tr>
<tr>
<td>EMAAC</td>
<td>5820</td>
<td>1580</td>
</tr>
<tr>
<td>MAAC</td>
<td>2520</td>
<td>1420</td>
</tr>
<tr>
<td>PJM West</td>
<td>5310</td>
<td>-1700</td>
</tr>
</tbody>
</table>
Northern NJ Short Circuit
• **PSEG Short Circuit Issue**
 - 2012 RTEP identified several busses in PSEG zone where the fault currents exceed 80 kA
 - A number of alternatives evaluated including rebuilding stations to 90 kA standard, installing current limiting reactors, splitting the system
 - Original recommendation from October 2012 TEAC: Construct HVDC back to Back facility at Hudson
Corridor overview
PSEG Transmission Zone Short Circuit

• PJM is evaluating alternative solutions
 – Double circuit 345 kV Solution
 • Isolate Hudson 230 kV from the 138 kV at Marion and 345 kV at Farragut
 • Convert the 138 kV buses and transmission facilities on the path from Linden to Bergen to double circuit 345 kV
 – Other solutions considered
 • Double circuit 230 kV Solution
 – Isolate Hudson 230 kV from the 138 kV at Marion and 345 kV at Farragut
 – Convert the 138 kV buses and transmission facilities on the path from Linden to Bergen to double circuit 230 kV
 • Other configurations
 – Hudson #2 generation location assumption
 • Existing Hudson 230 kV or converted Marion 230 kV or 345 kV station?
• Double circuit 345 kV Solution
• Existing baseline projects included in the scope
PSEG Transmission Zone Short Circuit

• Assumptions
 – Hudson 230 kV bus tie status
 – Hudson #2 generation location
 • Hudson 230 kV or Marion 345 kV
 – Queued Generation
 • T41, T42, T107
 • X2-050 (660 MW at Essex 230 kV), Y2-083 (198 MW at Essex 138 kV), Y2-105 (50 MW at Eagle Point 230 kV)
Solution Alternatives – Short Circuit Performance

<table>
<thead>
<tr>
<th>Location</th>
<th>Breaker Capacity</th>
<th>No Solution</th>
<th>HVDC Solution</th>
<th>Double Circuit 345 kV Solution</th>
<th>Double Circuit 345 kV (w/ Hudson #2 at Marion 345 kV) Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Essex 230kV</td>
<td>80</td>
<td>80.4</td>
<td>72.9</td>
<td>72.3</td>
<td>68.3</td>
</tr>
<tr>
<td>Hudson 1-6 230kV</td>
<td>80</td>
<td>75.7</td>
<td>62.6</td>
<td>67.8</td>
<td>61.8</td>
</tr>
<tr>
<td>Hudson 7-12 230kV</td>
<td>80</td>
<td>78.0</td>
<td>66.0</td>
<td>67.8</td>
<td>61.8</td>
</tr>
<tr>
<td>Kearny 230kV</td>
<td>80</td>
<td>83.2</td>
<td>74.1</td>
<td>72.6</td>
<td>67.3</td>
</tr>
<tr>
<td>Marion 1 138kV</td>
<td>80</td>
<td>77.8</td>
<td>73.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marion 3 138kV</td>
<td>80</td>
<td>76.2</td>
<td>71.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NJT Meadow 230kV</td>
<td>75.598</td>
<td>80.0</td>
<td>71.4</td>
<td>71.2</td>
<td>67.7</td>
</tr>
</tbody>
</table>
PSEG Transmission Zone Short Circuit

• Next Steps
 – Cost impact
 – Additional load flow analysis
 – Coordination with NYISO
Artificial Island RTEP Proposal Window
Announcement
(Presented at 3/7/2013 TEAC)
• Announce window and potential timeline
• Request CEII/NDA submittals from anticipated participants
• Request Designated Entity Pre-Qualification

PSS/E v32 Case Development
(Initial case complete, pending benchmarking)
• Initial PSS/E v32 case created
• Benchmarking in Progress
• Develop and benchmark critical system condition cases

Open Window
(Anticipated 4/29/2013
60 Day Duration)
• Open the “Artificial Island” RTEP Proposal Window
• Complete problem statement available
• Analytical files available

Coordinate with Window Participants and Receive Solution Proposals
• Coordination VIA www.pjm.com
• Data, Information
• Questions & Answers

Close Proposal Window
(Estimated 6/28/2013)
• Dependant on timing of window opening

PJM Evaluates Solution Proposals
Artificial Island Proposal Window Status

• Window opened on 4/29/2013
 – Anticipated close on 6/28/2013

• Scope and Requirements Document Posted

• Analytical Study files posted

• Updates
Artificial Island Proposal Window Next Steps

• Continue to respond to stakeholder questions

• Evaluate solution alternatives
High Voltage in PJM Operations Analysis Update
• Determined potential reactor locations
 – from historical PI data and high voltage alarm data

• Modeled and simulated reactors in several operational cases to determine the potential magnitude that is necessary to control high voltage

• Also simulated high voltage conditions and reactors in a planning case to determine system needs beyond the operational cases
High Voltage Locations in PJM Operations Cases

- 5 snapshot cases from PJM Operations evaluated
Preliminary Solutions and Locations
Proposed Preliminary Solutions

<table>
<thead>
<tr>
<th>Upgrade ID</th>
<th>Description</th>
<th>TO</th>
<th>In Service Date</th>
<th>Cost Estimate (SM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>b2227</td>
<td>50 MVAR shunt reactor at Mickleton 230 kV and relocate Mickleton #1 230 69 kV transformer</td>
<td>AEC</td>
<td>6/1/2016</td>
<td>7.6</td>
</tr>
<tr>
<td>b2228</td>
<td>+150/-100 MVAR SVC at Cedar 230 kV</td>
<td>AEC</td>
<td>6/1/2016</td>
<td>23.2</td>
</tr>
<tr>
<td>b2229</td>
<td>Install a 300 MVAR reactor at Dequoin 345 kV</td>
<td>AEP</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>b2230</td>
<td>Replace existing 150 MVAR reactor at Amos – N. Proctorville Hanging Rock 765 kV with 300 MVAR reactor</td>
<td>AEP</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>b2231</td>
<td>Install 765 kV reactor breaker at Dunmore 765 kV substation</td>
<td>AEP</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>b2232</td>
<td>Install 765 kV reactor breaker at Marysville 765 kV substation</td>
<td>AEP</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>b2233</td>
<td>Change transformer tap settings for the Saker 765/345 kV transformer</td>
<td>AEP</td>
<td></td>
<td>0.025</td>
</tr>
<tr>
<td>b2175.1</td>
<td>200 MVAR shunt reactor at Brunot Island 345 kV</td>
<td>DCLO</td>
<td>6/1/2016</td>
<td>9.65</td>
</tr>
<tr>
<td>b2175.2</td>
<td>200 MVAR shunt reactor on future Brunot Island – Carson 345 kV circuit</td>
<td>DCLO</td>
<td>6/1/2016</td>
<td>9.65</td>
</tr>
<tr>
<td>b2236</td>
<td>260 MVAR reactor at West Wharton 230 kV</td>
<td>JCP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b2237</td>
<td>130 MVAR reactor at Monocacy 230 kV</td>
<td>APS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b2238</td>
<td>50 MVAR reactor at Buckingham 230 kV</td>
<td>PECO</td>
<td>12/31/2017</td>
<td>3.9</td>
</tr>
<tr>
<td>b2239</td>
<td>50 MVAR reactor at Alburtis 300 kV</td>
<td>PPL</td>
<td>6/1/2016</td>
<td>9</td>
</tr>
<tr>
<td>b2240</td>
<td>100 MVAR shunt reactor at Elmsport 230 kV</td>
<td>PPL</td>
<td>6/1/2016</td>
<td>6.5</td>
</tr>
<tr>
<td>b2241</td>
<td>50 MVAR reactor at Athens 230 kV</td>
<td>PSEG</td>
<td>6/1/2015</td>
<td>9.2</td>
</tr>
<tr>
<td>b2242</td>
<td>50 MVAR reactor at Bergen 230 kV</td>
<td>PSEG</td>
<td>6/1/2015</td>
<td>8.4</td>
</tr>
<tr>
<td>b2243</td>
<td>50 MVAR reactor at Hudson 230 kV</td>
<td>PSEG</td>
<td>6/1/2015</td>
<td>8.3</td>
</tr>
<tr>
<td>b2244</td>
<td>Two 50 MVAR reactors at Stanley Ice 230 kV</td>
<td>PSEG</td>
<td>6/1/2015</td>
<td>15.7</td>
</tr>
<tr>
<td>b2245</td>
<td>50 MVAR reactor at West Orange 230 kV</td>
<td>PSEG</td>
<td>6/1/2015</td>
<td>8.7</td>
</tr>
<tr>
<td>b2246</td>
<td>50 MVAR reactor at Aldene 230 kV</td>
<td>PSEG</td>
<td>6/1/2015</td>
<td>6.9</td>
</tr>
<tr>
<td>b2247</td>
<td>150 MVAR reactor at Camden 230 kV</td>
<td>PSEG</td>
<td>6/1/2015</td>
<td>8.3</td>
</tr>
<tr>
<td>b2248</td>
<td>150 MVAR reactor at Gloucester 230 kV</td>
<td>PSEG</td>
<td>6/1/2015</td>
<td>7.8</td>
</tr>
<tr>
<td>b2249</td>
<td>50 MVAR reactor at Clarksville 230 kV</td>
<td>PSEG</td>
<td>6/1/2015</td>
<td>7.2</td>
</tr>
<tr>
<td>b2250</td>
<td>50 MVAR reactor at Hitchmans 230 kV</td>
<td>PSEG</td>
<td>6/1/2015</td>
<td>10</td>
</tr>
<tr>
<td>b2251</td>
<td>50 MVAR reactor at Coos Corner 230 kV</td>
<td>PSEG</td>
<td>6/1/2015</td>
<td>7</td>
</tr>
</tbody>
</table>
High Voltage in PJM Operations

• Next Steps
 – Finalize Transmission Owner Review
 – Propose final solutions
 – PJM Board Approval
Deactivation Analysis Update
Deactivation Update

• Deactivation Withdrawal Notice by NRG
 – Deactivation notice withdrawn for Avon Lake Units 7&9 (732 MWs)
 – Deactivation notice withdrawn for New Castle Units 3, 4, 5 and Diesels (330 MWs)
• Retool in progress due to updated notifications
• RMR Update
The Croydon – Burlington 230 kV line is overloaded for various contingencies. Additional reinforcement of the line is needed as loading on the line has increased due to the various generator deactivations.

Original Solution: Reconductor the PECO portion of the Burlington - Croydon circuit and replace aerial wire at Croydon (b1197).

- Cost Estimate: $1.0 M
- Required IS Date: 6/1/2014.

Revised Solution: Reconductor the PECO portion of the Burlington - Croydon circuit, replace some towers, and replace aerial wire at Croydon (b1197).

- Cost Estimate: $4.4 M
- Required IS Date: 6/1/2014.
Next Steps
Questions?

Email: RTEP@pjm.com
• 5/9/2013 – Original version presented to PJM TEAC