

Electrical Theory

Power Principles & Phase Angle

PJM State & Member Training Dept.

Objectives

- Identify the characteristics of Sine Waves
- Discuss the principles of AC Voltage, Current, and Phase Relations
- Compute the Energy and Power on AC Systems
- Identify Three-Phase Power and its configurations

• Generator operation is based on the principles of electromagnetic induction, which states:

When a conductor moves, cuts, or passes through a magnetic field, or vice versa, a voltage is induced in the conductor

• When a generator shaft rotates, a conductor loop is forced through a magnetic field, inducing a voltage

- The magnitude of the induced voltage is dependent upon:
 - Strength of the magnetic field
 - Position of the conductor loop in reference to the magnetic lines of force
- As the conductor rotates through the magnetic field, the shape produced by the changing magnitude of the voltage is a sine wave

http://micro.magnet.fsu.edu/electromag/java/generator/ac.html

Coil Angle (0)	0	45	90	135	180	225	270	315	360
e = Vmax.sinθ	0	70.71	100	70.71	0	-70.71	-100	-70.71	-0

- A cycle is the part of a sine wave that does not repeat or duplicate itself
- A period (T) is the time required to complete one cycle
- Frequency (f) is the rate at which cycles are produced
- Frequency is measured in hertz (Hz), one hertz equals one cycle per second

$$T = \frac{1}{f} \qquad f = \frac{1}{T}$$
$$T = \frac{1}{60 \text{ Hz}} = .0167 \text{ seconds}$$

- The amplitude of a sine wave is the value of the voltage at a specific time, it can be given in either peak or peak-to-peak values
- Peak value is the waveform's maximum value and occurs twice each cycle
- Peak-to-peak value is equal to twice the peak value:

$$E_{P-P} = 2(E_P)$$

- Root Mean Square (RMS), or the effective value, is the amount of alternating current having the same heating effect in a resistive circuit as a given amount of direct current
- One ampere of AC RMS and one ampere of direct current produce the same power when flowing through equivalent circuits

 $I_{RMS} = 0.707(I_P)$

• The relationship between the peak value and the RMS value of voltage is similar:

 $E_{RMS} = 0.707 (E_{P})$

• Magnitudes of AC values are usually given in terms of effective RMS values

- Review:
 - DC current flows in only one direction at a constant magnitude
 - AC current continually changes in both magnitude and direction
 - AC current flows in one direction, then flows in the opposite direction
 - If AC current is present, there must also be alternating voltage and power
 - AC voltage produces the AC current
 - AC power is produced by the AC current and AC voltage

• AC voltage formula: $E = E_{max} \sin \Theta$

where:

E = value of the induced EMF (volts)

E_{max} = maximum induced EMF (volts)

- θ = angle from the reference (degrees)
- E_{max} is also referred to as amplitude or peak voltage (E_P)

• The instantaneous voltage at any given point along the sine wave is equal to: $E = E_{max} \sin \Theta$

• AC instantaneous current formula :

 $I = (I_{max})(\sin\theta)$

• Rotation of the conductor in the field produces an EMF, but current will not flow unless the circuit path is closed

- Advantages of AC power over DC power:
 - Easier to transform one AC voltage level to another
 - Efficiency of power transmission much better at higher voltages
 - AC motors are less complex than DC motors and require less maintenance (no brushes or commutators)

- Advantages of DC power over AC power:
 - AC losses associated with series inductance and line charging due to capacitance are eliminated
 - HVDC lines require only two power conductors rather than three required for AC facilities
 - HVDC lines can tie two AC power systems having dissimilar characteristics (50 Hz to 60 Hz)

- Sine waves with the same frequency have what is termed as phase relations
- A Phase relation, or phase angle, is the angular difference between sine waves of the same frequency
- Phase angle is the portion of a cycle that has elapsed since another wave passed through a given value

- In-phase means the phase difference between two variables is equal to zero degrees
- Out-of-phase means that the phase difference between two variables is not zero degrees
- Phase difference only applies to waveforms that have the same frequency (each waveform should complete one cycle in the same amount of time)
- Angle θ is used when comparing the phase angle difference between voltage and current
- Angle δ is used when comparing the phase angle difference between two voltage curves or two current curves

Review

- Are the waves both the same frequency?
 Yes
- Does the voltage lead or lag the current?

Voltage leads the current

Energy and Power on AC Systems

Energy & Power

- The power that flows in a power system is composed of active and reactive power. Both components are necessary to serve customer loads
- Power is the rate of performing work
- Power is also the rate at which energy is used or dissipated
- The measure of electricity's ability to perform work is the watt

AC and DC Power

- For a DC circuit, the power consumed is the sum of the I²R heating in the resistors
 - Power is equal to the source power
- For an AC circuit, the power consumed is also the sum of the I²R heating in the resistors
 - The power consumed is not always equal to the source power because of the capacitance and inductance in the circuit
- Power consumption always refers to the I²R heating in the resistors, reactance consumes no power

AC and DC Power

 When an amount of positive charge (q) moves from a higher potential to a lower potential, its potential energy decreases (voltage potential)

$$P = \frac{Change \ in \ energy}{Time \ interval} \times Voltage$$

• The change in energy per unit of time is the current (I) in the device

AC and DC Power

• When an electric charge flows from point A to point B in a circuit, leading to a current (I), and the voltage between the points is (E), the electric power associated with this current and voltage is:

P = EI

• The charge can either lose or gain electric potential energy and must be accompanied by a transfer of energy to some other form (conservation of energy)

Real Power

- Many devices are essentially resistors that become hot when provided with sufficient electric power
- The power consumed by the resistance of a circuit is called "Real" or "Active" power
- Real power is the useful or working energy

P = EI $P = I^{2}R$ $P = E^{2}/R$

• Real Power (P) is expressed in watts

Real Power

- Monthly electric bills specify the cost of energy consumed during a month
- Energy is the product of power and time, and is computed by expressing power in kilowatts (kW) and time in hours
- Energy consumption commonly uses the units of kilowatt-hour (kWh)

Electric Energy

• Electric energy is used or produced when electric power is applied over a period of time

 $E_n = Pt$

where,

- E_n = energy in watt hours
- P = power in watts

t = time in hours

Power in Resistive Circuits

- In a pure resistive circuit, current and voltage are in phase
- Active power is the rate used to perform work such as lighting a room, heating a building or turning a motor shaft
- In a generating station, more fuel must be added to the prime mover to increase the active power output
- In a transmission system, when power in a resistance is dissipated as heat (I²R), this is considered a loss
- The general equation for real power in all types of circuits is:

$P = EI \cos \Theta$

Reactive Power

- Reactance in an AC circuit causes a phase shift between current and voltage
- If a circuit contains only inductance, or only capacitance, a maximum phase shift of 90° occurs between the current and voltage
- Most circuits have a combination of resistance and reactance resulting in a phase shift of less than 90°
- This combination of resistance and reactance is referred to as Impedance (Z)

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

Reactive Power

- Reactive Power (Q) is used to support the magnetic and electric fields found in inductive and capacitive loads
- Reactive Power is measured in volt amperes reactive (VARs)
- Unlike resistors, which consume power, inductors and capacitors store and release energy but do not consume power
- In order to calculate power in a circuit containing both real and reactive power, we must use vectors and right triangle relationships

Apparent Power

- Apparent Power (S) is the power that appears to be present when voltage and current are measured separately regardless of the phase angle
- Apparent Power is the product of voltage and current

S = VI = VoltAmperes(VA)

- Real power does not equal apparent power if a circuit contains both resistance and reactance
- Real power and apparent power differ by cosine θ

Power Factor

• Power Factor (PF) is the ratio of real power to apparent power:

$$PF = \cos \theta = \frac{P}{S} = \frac{Watts}{Volt Amps}$$

- Power Factor indicates the amount of apparent power (total current and voltage) that is actually doing the work or producing the real power
- Power Factor can be any value between 0 and 1

Power Triangle

Power Factor

- If real power equals apparent power, voltage and current are in-phase, and the resulting power factor is 1
- If real power does not equal apparent power, and voltage and current are out-of-phase by 90°, the power factor is 0
- If real power does not equal apparent power, and voltage and current are out-of-phase between 0° and 90°, power factor will be between 0 and 1

Power Factor

- Why is power factor so important?
 - a) High power factor enables motors and other equipment to provide their rated power, without drawing excess current
 - b) Electric energy transfer is more efficient with higher power factors
 - The power system can transmit and distribute more real power, without having to increase current-carrying capabilities of utility equipment

- A system is balanced when the impedances in a three-phase system are identical in magnitude and phase
- Voltage, line current, real power, apparent power, reactive power, and power factor are identical in a balanced system for all three phases
- An AC generator produces three evenly-spaced sine wave voltages, each with a phase angle difference of 120°
- Three conductors or phases transmit the energy, and each phase carries its own phase current

- Utilities use three-phase systems because:
 - Cost of a three-phase transmission line is less than a single-phase line
 - A three-phase system provides a more constant load on the generator (at least two phases are providing current and power at any instant) allowing smoother operation

- In a three-phase system, there are two ways to specify voltage:
 - Phase Voltage (Line-to-Ground)
 - Line Voltage (Line-to-Line)
- In a three-phase system, there are two basic types of winding connections:
 - Delta connection
 - Wye connection

Wye Connection

3-Phase Wye (Balanced Load)

$$I_{P} = I_{L}$$

 $E_{P} = E_{L} / 1.73$
 $W_{WYE} = E_{L}^{2} / R = 3(E_{P}) / R$
 $W_{WYE} = 1.73E_{L}I_{L}$

Wye Connection

- Coils are connected together at a common or neutral point (one wire for each voltage and a neutral)
- Line voltages are 120° out of phase with each other
- Line currents equal Phase currents $I_L = I_P$
- Line voltages do not equal Phase voltages
- Voltage between any two lines is the result of two phase voltages being 120 degrees out of phase

 $E_L = E_P(1.732)$ 208 V = (120 V)(1.732)

Delta Connection

3-Phase Delta (Balanced Load)

 $I_{P} = I_{L} / 1.73$ $E_{P} = E_{L}$ $W_{Delta} = 3(E_{L}^{2}) / R$ $W_{Delta} = 1.73E_{L}I_{L}$

Delta Connection

- Ends of the coils are connected together
- No current flows in the phase windings until a load is connected because the sum of the voltages on any two of the phases is equal and opposite to the other phase
- Line voltage is equal to the Phase voltage $E_L = E_P$
- Line current is not equal to Phase current because each line carries current from two phases and are 120° out of phase

 $I_L = (1.732)(I_P)$

• There is no neutral

Wye or Delta Connection

• The power that is dissipated by each phase of either a delta **or** wye connected load is:

Power per phase (P_P):

or

$$P_P = (E_P I_P) \cos \theta$$
 $P_P = \frac{(E_L I_L) \cos \theta}{\sqrt{3}}$

 $3\emptyset$ Power (P₃₀):

 $P_{3\emptyset} = 3P_p^{\text{or}}$ $P_{3\emptyset} = \sqrt{3}E_L I_L \cos\theta$

Questions?

PJM Client Management & Services Telephone: (610) 666-8980 Toll Free Telephone: (866) 400-8980 Website: www.pim.com

The Member Community is PJM's self-service portal for members to search for answers to their questions or to track and/or open cases with Client Management & Services