PJM MOD-032 Steady State, Dynamics, and Short Circuit Modeling Data Requirements and Reporting Procedures Document
Version 1: Released June 20, 2015
Version 2: Released March 9, 2017
Version 3: Released March 01, 2018
Version 4: Released March 29, 2018
Contents

1 Introduction ... 4
 1.1 Purpose ... 4
 1.2 Background .. 4
 1.3 Process Overview .. 4
 1.4 Specifications for posting of data requirements and reporting procedures 5
 1.5 Responsible Entities and expectations .. 6
 1.5.1 Load Serving Entity ... 6
 1.5.2 Generator Owner ... 6
 1.5.3 Transmission Owner .. 7
2 Deliverables .. 7
 2.1 Load Flow ... 7
 2.2 Dynamics ... 9
 2.3 Short Circuit ... 9
3 Procedure .. 9
 3.1 Annual Schedules ... 9
 3.2 Auxiliary data ... 12
 3.2.1 Ties ... 12
 3.2.2 Interchange .. 12
4 Power flow modeling requirements and guidelines ... 13
 4.1 Data Format .. 13
 4.2 Level of Detail ... 13
 4.3 Data Checks ... 14
 4.4 Model On Demand ... 14
5 Generation Owner Data Requirements and Guidelines .. 14
6 Dynamics Data Requirements and Guidelines .. 14
 6.1 Dynamics Data Format .. 14
 6.2 Dynamics modeling Level of Detail ... 14
 6.2.1 Generators .. 14
 6.2.2 Transmission Owner and Merchant Transmission Provider Owned Equipment 15
 6.2.3 Dynamics Load Model Data ... 15
 6.3 Accepted Dynamics Models .. 15
 6.4 Dynamics Data Checks ... 16
 6.5 Dynamics Initialization and Checking Procedure .. 16
 6.6 Dynamics Case Acceptance Criteria ... 16
7 Short Circuit Data Requirements and Guidelines .. 16
 7.1 Short Circuit Data Format .. 16
 7.2 Short Circuit Level of Detail ... 16
 7.3 Short Circuit Submittal Procedure ... 17
Appendix 1: Detailed Data Requirements for Steady State ... 18
Appendix 2: Generator Owner Data Requirements .. 22
Appendix 3: Detailed Data Requirements for Short Circuit ... 30
1 Introduction

1.1 Purpose
MOD-032, according to the NERC standard, is to “establish consistent modeling data requirements and reporting procedures for development of planning horizon cases necessary to support analysis of the reliability of the interconnected transmission system.” The purpose of this document is to establish the data requirements, schedules, and submission methods to ensure data owner compliance with the standard.

1.2 Background
The MOD-032 and MOD-033 standards are focused on system-level modeling and validation. MOD-032 replaces and consolidates MOD-010-0, MOD-011-0, MOD-012-0, MOD-013-0, MOD-014-0, and MOD-015-0.1. It requires various Functional Entities, as data owners, to submit data to their Transmission Planner(s) (TP) and Planning Coordinator(s) (PC). These data owners include Transmission Owners (TO), Load Serving Entities (LSE), and Generation Owners (GO). The data submitted is used to inform the steady state, dynamics, and short circuit models for various years and scenarios. MOD-033 is a new standard requiring every PC to put into place a process to validate the models for its area.

1.3 Process Overview
PJM is the TP and PC for its region and therefore must develop data requirements, reporting procedures, and schedules for the data owners in its area to provide data to build steady state, dynamics, and short circuit cases. MOD-032 Requirement 1.2.4 states that the data must be submitted at least every 13 months.

The basic process is outlined in Figure 1. PJM will reach out to individual data owners using a variety of methods. Methods are targeted to the specific Functional Entities and will include email, compliance bulletins, and announcements at PJM committee meetings. These announcements will include updated schedules and deadlines, an overview of expectations by Functional Entity, and links to this document. Any appreciable changes to this document will be presented at PJM’s Planning Committee.

Data owners will provide data annually and in a timely fashion consistent with that year’s required schedule. Upon submission, PJM will review the data and respond to the Functional Entity with any technical concerns. For any technical concerns, PJM will follow the procedure in MOD-032 Requirement 3. The Functional Entity will have 90 days to respond with model updates or a technical basis for maintaining the data as submitted.
PJM uses a feedback review process that gives Transmission Owners an opportunity to review the data after submission and review by PJM, but before the final approval by the NERC designee.

Figure 1

1.4 Specifications for posting of data requirements and reporting procedures

This document will be posted on the MOD-032 webpage on PJM.com available at the following url: https://pjm.com/planning/services-requests/planning-modeling-submission-mod-032.aspx

This document and the data requirements and reporting procedures were developed by PJM staff to ensure compliance with MOD-032 requirement 1. PJM staff made monthly progress updates at PJM Planning Committee starting in October 2014. This document incorporates feedback provided from representatives from various functional entities including GOs and TOs.

PJM will communicate any updates of this document via various committee mailing lists and with in-person announcements at various committees such as the Planning Committee, the Reliability Standards and Compliance Subcommittee, Nuclear Generation Owner User Group,
and the System Operations Subcommittee. PJM’s TOs, GOs, and LSEs regularly attend these meetings.

The version of this document posted on pjm.com is the latest version. Any major revisions to this document or the data requirements, reporting procedures, and schedules contained herein will be communicated via various PJM committees. In addition PJM will reach out directly to TOs, GOs, and LSEs with its current modeling contacts list. Also, a compliance bulletin will be posted.

1.5 Responsible Entities and expectations

Requirement 2 of MOD-032 requires GOs, TOs, and LSEs to submit steady state, dynamics, and short circuit data to their TPs and PCs according to the requirements, schedules, and submission methods set out in this document. A brief description of these entities and their responsibilities:

1.5.1 Load Serving Entity

LSEs, according to NERC, secure “energy and transmission service to serve the electrical demand and energy requirements of its end-use customers.” With regard to MOD-032, they will submit their forecasted load for the years and scenarios being developed.

It is expected LSEs will coordinate with their respective interconnected TO(s) to submit aggregate demand for each scenario listed in section 2.1. For steady state model development, LSEs are expected to provide aggregate demand at the bus level as well as the location of future load additions. For dynamic modeling data, LSEs are expected to coordinate with TOs to provide load composition and characteristics.

1.5.2 Generator Owner

A GO, according to NERC is an “entity that owns and maintains generating units.” With regards to MOD-032, GOs are responsible for submitting modeling data for existing generating units. PJM asks that all generators with capacity in PJM markets or having machines over 20 MW submit data under MOD-032. PJM queue projects coming in service during the calendar year are asked to submit data under MOD-032 via the as-built data submitted to PJM’s Queue Point tool as required by their agreements and milestones. That submittal will stand for one calendar year. So if a queue project submits it’s as built data to PJM’s Queue Point as stipulated by its agreement in December 2018 they will not have to submit during the 2019 submission window since that window is within one calendar year of their Queue Point submission. After that window queue projects are expected to update and confirm their data as any other existing generator in Gen Model.

PJM expects GOs to be attentive to committee activities and PJM.com for MOD-032 compliance announcements. To submit MOD-032 data to PJM, GOs are required to establish a “My PJM” log in for pjm.com and use the “Gen Model” tool to annually provide and/or verify the accuracy of the data listed in Appendix 2: Generator Owner Data Sheet
Requirements. This data will aid in building steady state, dynamics, and short circuit cases. They will also have to provide dynamics data in the best format they have available. This could be word or excel document, pdf, dyr, etc.

1.5.3 Transmission Owner

A TO, according to NERC, is “The entity that owns and maintains transmission facilities.” With regards to MOD-032, TOs are responsible to submit modeling data for their existing and future transmission assets.

The TOs are required to submit all data contained in MOD-032-1 attachment 1 which can be found at the following URL: https://www.nerc.com/pa/Stand/Reliability%20Standards/MOD-032-1.pdf. TOs are expected to submit and coordinate tie data. They will also submit system topology information using the current Siemens Model On Demand production system at PJM such that each scenario listed in section 2.1 can be built. Once the cases are built using Model On Demand, TOs will be expected to review topology for accuracy and provide updates to correct the models. TOs will also be expected to provide data for short circuit case builds. TOs are expected to provide dynamics modeling information for any dynamics devices they own. Any TOs that serve external area load via their transmission system should coordinate with that company and include in its data submission.

Non-incumbent TOs that are awarded projects through PJM’s FERC Order 1000 window process shall provide modeling data for their project via an idev. PJM will ensure that this idev is included in future case builds. Non-incumbent TOs will be asked to review models for accuracy and provide PJM feedback. Any questions and updates should be sent to MOD-032@pjm.com.

2 Deliverables

2.1 Load Flow

The load flow files developed for MOD-032 compliance are built using Siemens PTI PSS/E and Model On Demand software. The MMWG is developing its models in PSS/e v34 starting with the 2019 Series. As of February 2019 PJM is finalizing testing of Model On Demand v10 and anticipates using this version for development of the 2019 Series MMWG models. Transmission Owners are given access to Model On Demand to upload project and profile files to aid in building the case years, seasons, and scenarios as defined by the NERC designee. Upon announcement of a change in the cases to be built, this section will be updated. The current case types and scenarios list developed by the Multiregional Modeling Working Group (MMWG) annually is:

- Year 1 Spring Light Load
- Year 1 Summer Peak
- Year 1 Winter Peak
· Year 2 Spring Light Load
· Year 2 Summer Peak
· Year 2 Winter Peak
· Year 5 Spring Light Load
· Year 5 Summer Peak
· Year 5 Shoulder Peak
· Year 5 Winter Peak
· Year 10 Summer Peak
· Year 10 Winter Peak

For each of these scenarios, the equipment and generation included in each should be in service by the following dates:

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Topological changes modeled if in-service on or before this date in the target model year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Peak</td>
<td>July 15<sup>th</sup></td>
</tr>
<tr>
<td>Winter Peak</td>
<td>January 15<sup>th</sup>/yyyy+1</td>
</tr>
<tr>
<td>Light Load</td>
<td>April 1<sup>st</sup></td>
</tr>
<tr>
<td>Shoulder Peak</td>
<td>July 15<sup>th</sup></td>
</tr>
</tbody>
</table>

· Note that “yyyy” = target model year

Summer Peak Load (yyyySUM) — is defined as the summer peak demand with load forecast defined in table B-1 of PJM’s Load Forecast Report, developed by PJM’s Resource Adequacy Planning Department. Topological modeling changes shall be incorporated into the model if they are to go into effect on or before July 15th. Summer interchange schedules should reflect transactions expected to be in place on July 15th. Planned summer maintenance of generation and transmission should be reflected in the operating year case.

Winter Peak Load (yyyyWIN) — is defined as the winter peak demand with load forecast defined in table B-2 of PJM’s Load Forecast Report, developed by PJM’s Resource Adequacy Planning Department. Topological modeling changes shall be incorporated into the model if they are to go into effect on or before January 15th of the following year (yyyy + 1). Winter interchange schedules should reflect transactions expected to be in place on January 15th. Planned winter maintenance of generation and transmission should be reflected in the operating year case.

Light Load (yyyySLL) — is defined as a typical early morning load level, modeling at or near minimum load conditions. Historically for PJM this is 50% of that year’s summer peak load as defined in table B-1 of PJM’s Load Forecast Report. Topological modeling changes shall
be incorporated into the model if they are to go into effect on or before April 1st. Generation dispatch will be in line with PJM’s historical dispatch during these scenarios. Planned spring maintenance of generation and transmission should be reflected in this case. Summer or appropriate equipment ratings should be used.

Shoulder Peak Load (Summer) (yyyySSH) — is defined as 70% to 80% of summer peak load conditions. Dispatchable and pumped storage hydro units should be modeled consistent with the peak hour of a typical summer day with run-of-river hydro on-line. Generation dispatch and interchange schedules should be commensurate with the experience of the PC during such load periods, not just including firm transactions. Summer or appropriate equipment ratings should be used.

2.2 Dynamics

The dynamics cases will use the topology developed for the load flow series of cases as outlined above. GOs will need to provide generator exciter, governor, power system stabilizer, and protection equipment updates annually. TOs with dynamic devices will also need to provide PJM with dynamics modeling data for the dynamic devices they own.

2.3 Short Circuit

PJM will develop Short Circuit models in Aspen using input from TOs and GOs. Model development will align with the current RTEP development schedule, submission methods, and level of modeling detail defined in PJM Manual 14B.

3 Procedure

3.1 Annual Schedules

The following schedules contain the overall annual timelines for case builds and the TO and GO schedule for submission of data. Data must be submitted at least once every 13 months.

<table>
<thead>
<tr>
<th>Task</th>
<th>Anticipated Annual Completion Month</th>
<th>Additional Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kick off Conference Call</td>
<td>February</td>
<td></td>
</tr>
<tr>
<td>Tie line update</td>
<td>May</td>
<td></td>
</tr>
<tr>
<td>Interchange Update</td>
<td>May</td>
<td></td>
</tr>
<tr>
<td>Build Cases to be submitted</td>
<td>May</td>
<td>Cases assembled by PJM in MOD based on latest available base case and project file information</td>
</tr>
</tbody>
</table>
The short circuit schedule presented below keeps with the current RTEP development cycle. The schedule set out by the NERC designee makes this schedule subject to change. If the designee requests a case, PJM will request TOs to review and provide feedback on a 2 year and/or 5 year case based on the NERC designee request.

Two year case build

<table>
<thead>
<tr>
<th>Task</th>
<th>Anticipated Annual Completion Month</th>
<th>Additional Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Send out draft case</td>
<td>August</td>
<td></td>
</tr>
<tr>
<td>Send out Trial 1 case</td>
<td>October</td>
<td></td>
</tr>
<tr>
<td>Receive updates</td>
<td>October/November</td>
<td></td>
</tr>
<tr>
<td>Apply updates</td>
<td>–October/November</td>
<td></td>
</tr>
<tr>
<td>Send out Trial 2 case</td>
<td>December</td>
<td></td>
</tr>
<tr>
<td>Finalize Case</td>
<td>February</td>
<td></td>
</tr>
</tbody>
</table>

Five year case build

<table>
<thead>
<tr>
<th>Task</th>
<th>Anticipated Annual Completion Month</th>
<th>Additional Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Send out Trial 1 case (based on final year 2 case)</td>
<td>December/January</td>
<td></td>
</tr>
<tr>
<td>Receive and apply updates</td>
<td>–January/February</td>
<td></td>
</tr>
<tr>
<td>Finalize Case</td>
<td>February/March</td>
<td></td>
</tr>
</tbody>
</table>

Generation Owners Data Submittal

Generation Owners are required to submit their data via the PJM tool “Gen Model.” The required data to be submitted is listed in Appendix 2: Generator Owner Data Sheet
Requirements. GOs are also required to submit excitation, governor, and power system stabilizer data via the Gen Model portal as well. The user guide for “Gen Model” can be accessed here: http://www.pjm.com/~/media/etools/planning-center/gen-model-user-guide.ashx

For each year, the GO has a window during which to submit data. For the first year, this window will be three months long. Each subsequent year the window will be two months. The reasoning for the initial three month window is twofold. One, the GO will have to complete the full form the first year. However, the GO submitter still must log into the web form and verify that the data is still accurate. In subsequent years only data that has changed will need to be updated in the form. Second, additional time to deal with any issues with the new process has been built in.

PJM queue projects coming in service during the calendar year are asked to submit data under MOD-032 via the as-built data submitted to PJM’s Queue Point tool as required by their agreements and milestones. That submittal will stand for one calendar year. So if a queue project submits its as-built data to PJM’s Queue Point as stipulated by its agreement in December 2018 they will not have to submit during the 2019 submission window since that window is within one calendar year of their Queue Point submission. After that window queue projects are expected to update and confirm their data as any other existing generator in Gen Model.

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Task</th>
<th>Anticipated Window</th>
<th>Additional Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submit Information</td>
<td>May – July 2016</td>
<td>Additional time given for first years submittal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 2 – Beyond</th>
<th>Task</th>
<th>Anticipated Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submit Information</td>
<td>April - June</td>
<td></td>
</tr>
</tbody>
</table>

Transmission Owner Dynamics Data Submittal
PJM will maintain a list of dynamics model contacts at its TOs and will request data updates annually. In keeping with the dynamics schedule for the GOs above, this data will be requested to be provided in July. If there are no updates, PJM will need written confirmation. TOs will only be responsible for submitting data for devices they own.

<table>
<thead>
<tr>
<th>Task</th>
<th>Anticipated Window</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submit Information</td>
<td>July</td>
</tr>
</tbody>
</table>
3.2 Auxiliary data

3.2.1 Ties

PJМ will maintain a tie line database to be used in the creation of steady state and dynamics models. It will be distributed to the TOs at the beginning of each year’s build cycle for updates. PJМ will maintain data for intra-PJM ties between its TOs and Inter-PJM ties with other PCs.

1) Tie lines will only be included in steady state and dynamics models if they are included in the tie line database
2) The bus names and associated data in steady state and dynamics models should match those in the tie line database
3) Tie lines must be agreed upon by both TOs in order to be included
4) Tie line modeling should be consistent with the data requirements in Appendix 1: Detailed Data Requirements for Steady State
5) Include in service and out of commission dates for tie lines
6) Tie line database will be updated annually at the beginning of the case build cycle
7) TOs should only submit changes to the tie line database
8) Ties with an in-service/out-of-service date from 01/16/yyyy to 04/15/yyyy will be in-service/out-of-service in the spring model for the year yyyy.
9) Ties with an in-service/out-of-service date from 04/16/yyyy to 06/01/yyyy will be in-service/out-of-service in the summer model for the year yyyy.
10) Ties with an in-service/out-of-service date from 06/02/yyyy to 10/15/yyyy will be in-service/out-of-service in the fall model for the year yyyy.
11) Ties with an in-service/out-of-service date from 10/16/yyyy to 01/15/yyyy will be in-service/out-of-service in the winter model for the year yyyy.

3.2.2 Interchange

PJМ as the balancing authority (BA) will maintain an interchange spreadsheet for the creation of steady state and dynamics models. The spreadsheet will be based on confirmed transactions in PJM’s Open Access Same-time Information System (OASIS) system for the model year of each case to be built. PJМ will coordinate transaction source and sink with other PCs.

Given PJМ’s single area dispatch, interchange will be set for PJМ as a whole for each case, generation will be dispatched, and then the case will be solved with area interchange control off. When solved, the interchanges for each of its TOs will be maintained with area interchange control turned on.
4 Power flow modeling requirements and guidelines

4.1 Data Format

Power Flow data for MOD-032 compliance will be uploaded via PJM’s implementation of the Siemens/PTI software Model On Demand. Every Transmission Owner will have access to Model On Demand in order to upload project files and profile files to allow PJM to build the years and scenarios as defined by the NERC designee. A project (.prj) file will model future changes in transmission system topology, correct case modeling, and future generation projects. Profile files (.raw) model load profile and device settings on regulating equipment. Equipment ratings will be uploaded via comma separated value (.csv) format into Model On Demand.

Non-incumbent TOs that are awarded projects through PJM’s FERC Order 1000 window process shall provide modeling data for their project via an idev compatible with PSS/e v33. PJM will ensure that this idev is included in future case builds. Non-incumbent TOs will be asked to review models for accuracy and provide PJM feedback. Any questions and updates should be sent to MOD-032@pjm.com.

4.2 Level of Detail

The minimum level of detail that must be uploaded to Model On Demand in order to be included in steady state cases for MOD-032 compliance is:

Included in Model On Demand base case or in project files
- Bulk Electric System and PJM Market Monitored facilities
 - Sub-BES facilities can be included at TO discretion
- All PJM Board approved Baseline projects
- All Supplemental projects presented at TEAC and SRRTEP
- Interconnection projects with an executed ISA and their network upgrades
 - PJM as RP will coordinate with TO’s for project modeling

Included in Model On Demand profile files
- Load profile for each season
 - PJM will scale load based on its load forecast as described in section 2.1
 - It is expected that LSE’s will coordinate with their TO to provide load profile data
- TOs that serve external area load via their transmission system should coordinate with that company and include in its data submission
- Settings on equipment such as transformers, shunts, HVDC data, etc.
- Generation data will be provided via PJM’s Gen Model tool by GOs. PJM will coordinate with TOs to ensure model compatibility as necessary
More in depth detail on individual equipment can be found in Appendix 1: Detailed Data Requirements for Steady State.

4.3 Data Checks

The MMWG has established a set of Power Flow Data Checks, defined in their manual. PJM will run the MMWG’s data checking program to identify all errors according to the criteria defined by MMWG. All finalized power flow models shall be free of all such errors. The latest MMWG manual can be found at MMWG’s website located here: https://rfirst.org/ProgramAreas/RAPA/ERAG/MMWG/Pages/MMWG.aspx

4.4 Model On Demand

PJM currently has Model On Demand v9.1.2.8 installed. As of February 2019 PJM is in final testing of Model On Demand v10 and anticipates having it in production for the development of the 2019 Series MMWG cases.

Each TO can have as many users as it deems necessary, with one person being that TOs administrator in charge of approving its areas projects. PJM then will have to accept each submission before the projects are included in case builds. For any user issues contact MOD@pjm.com.

5 Generation Owner Data Requirements and Guidelines

Generation Owners will be responsible for annually submitting data to PJM via its Gen Model portal. The data to be submitted can be found in Appendix 2: Generator Owner Data Sheet Requirements. Generation Owners will have to create a log in account for pjm.com and request access to Gen Model via their Company Account Manager (CAM). The user guide for Gen Model can be accessed at the following URL: http://www.pjm.com/~/media/etools/planning-center/gen-model-user-guide.ashx

6 Dynamics Data Requirements and Guidelines

6.1 Dynamics Data Format

Dynamics data is to be submitted via Gen Model in any readable format. This would include Excel and Word documents, .pdf, .dyr, etc. PJM staff will use this data to update the dynamics models and produce the Siemens/PTI PSS/E .dyr file. Any changes year to year would require an update uploaded via Gen Model.

6.2 Dynamics Modeling Level of Detail

6.2.1 Generators

Generation Owners must submit detailed dynamics data for:
• Generators with capacity in PJM markets
AND
• Generators with 20 MW or greater nameplate capacity

Generation Owners are required to provide the information for the following:
• Generator Model
• Excitation System
• Governor Model
• Power System Stabilizer Model
• Reactive Line Drop Compensation Model

6.2.2 Transmission Owner and Merchant Transmission Provider Owned Equipment
Transmission Owners and Merchant Transmission Provider owned equipment will be responsible to supply dynamics modeling information for any SVCs, FACTS devices, HVDC, and other dynamic reactive devices they own. PJM will coordinate with dynamics contacts at its TOs in order for them to provide this information as appropriate for the schedule as determined by the NERC designee.

6.2.3 Dynamics Load Model Data
To meet TPL-001-4 R2.4.1 standard, PJM requires TOs develop and submit dynamic load models satisfying the following conditions:
• Submitted load models shall be under system peak load conditions
• Submitted load models shall represent dynamic behavior of loads
• Submitted load models shall consider dynamics of induction motor loads
• Submitted load models shall cover all load buses in TO’s area
• Submitted load models shall be usable:
 o Model shall initialize without error
 o Model shall results in negligible transients for a no-disturbance
 o Model shall results in stable behavior for a stable disturbance

An aggregate System Load model which represents the overall dynamic behavior of the Load is acceptable.

For acceptable dynamic load model, please refer to section 6.3.2.

6.3 Accepted Dynamics Models
The following sections outline the dynamics models PJM will accept.
PJM follows NERC and MMWG practice in regards to dynamic model requirements. The latest MMWG procedure manual can be found at the following URL:
https://rfirst.org/ProgramAreas/RAPA/ERAG/MMWG
Other models will only be accepted with a valid technical justification and proper documentation.

6.4 Dynamics Data Checks
PJM follows the MMWG practice in regards to dynamic data checks. The latest MMWG procedure manual can be found at the following URL:
https://rfirst.org/ProgramAreas/RAPA/ERAG/MMWG

6.5 Dynamics Initialization and Checking Procedure
PJM follows the MMWG practice in regards to dynamic initialization and Checking Procedure. The latest MMWG procedure manual can be found at the following URL:
https://rfirst.org/ProgramAreas/RAPA/ERAG/MMWG

6.6 Dynamics Case Acceptance Criteria
PJM follows the MMWG practice in regards to dynamics case acceptance criteria. The latest MMWG procedure manual can be found at the following URL:
https://rfirst.org/ProgramAreas/RAPA/ERAG/MMWG

7 Short Circuit Data Requirements and Guidelines

7.1 Short Circuit Data Format
PJM uses Aspen Oneliner V14.6 as its short circuit modeling and analysis software which uses .olr format. For TOs using Aspen, data shall be submitted either via .olr or change file (.chf) format. For TOs using Electrocon’s Cape software, changes will be accepted in .dxt format.

7.2 Short Circuit Level of Detail
Included in MOD base case or in project files
- Bulk Electric System and PJM Market Monitored facilities
 - Sub-BES facilities can be included at TO discretion
- All PJM Board approved Baseline projects
- All Supplemental projects presented at TEAC
- Interconnection projects with an executed ISA and their network upgrades
 - PJM as RP will coordinate with TOs for project modeling
7.3 **Short Circuit Submittal Procedure**

PJM will maintain short circuit modeling contacts with each of its TOs. PJM will send out the previous year’s short circuit case and will ask for updates in the data formats outlined above to be emailed back according to that year’s model build schedule. An anticipated short circuit build schedule is included in section 3.1.
Appendix 1: Detailed Data Requirements for Steady State

Steady State
Power Flow data is to be submitted via PJM’s Model On Demand portal and include all BES and PJM Market Monitored facilities. It is left to the discretion of the TO to model additional sub-BES model details.

1) Bus
 a. Data provider: Transmission Owner
 b. Data Submission: Model On Demand
 c. Data Requirements
 i. Bus Voltage: All buses are required to have a non-zero nominal voltage. The nominal voltages of buses connected by lines, reactors or series caps should be the same.
 ii. Bus Names: All BES bus names and voltages should be unique for BES facilities
 iii. Bus Area, Zone, and Owner: All buses in PJM’s models must have area, zone, and owner fields completed
 iv. Bus Numbers: Transmission Owners will be required to follow the bus number guidelines for their area as the latest MMWG Manual.

2) Aggregate Demand (aka Load)
 a. Data provider: Load Serving Entities via Transmission Owners
 i. The demand is the load aggregated at each bus identified by the TO as a load bus. The LSE is responsible to provide this information, usually by coordinating with the TO.
 b. Data Submission: Model On Demand
 i. Load profiles will be uploaded via Bus/Load/Generation profiles. For more information, see PJM’s Model On Demand Procedure Manual
 ii. A different BLG profile will be required for each scenario (Year/Season) being built
 c. Data Requirements
 i. Bus number, load ID, Area and Zone number
 ii. Real and reactive power
 iii. In-service status
 iv. Conformity status

3) Generating Units
 a. Data Provider: Generator Owner
 b. Data Submission: Generator Data Portal
c. Data Requirements: See Appendix 2: Generator Owner Data Sheet

Requirements for full Generation data requirements. This section is solely for Steady State Generator Requirements

i. Plant Name
ii. Unit Number
iii. EIA Plant Code
iv. Pmax Summer Net (MW)
v. Pmin Summer Net (MW)
vi. Qmax Summer Net (MVAr)
vii. Qmin Summer Net (MVAr)
viii. Pmax Winter Net (MW)
ix. Pmin Winter Net (MW)
x. Qmax Winter Net (MVAr)
xi. Qmin Winter Net (MVAr)

a. Data Provider: Transmission Owner
b. Data Submission: Model On Demand
c. Data Requirements:
 i. Bus Number
 ii. Machine ID

a. Data Provider: Resource Planner
b. Data Submission: Model On Demand
c. Data Requirements: The Recourse Planner will be responsible for providing the modeling data for future units
 i. Bus Number
 ii. Machine ID
 iii. Pmax Summer Net (MW)
 iv. Pmin Summer Net (MW)
 v. Qmax Summer Net (MVAr)
 vi. Qmin Summer Net (MVAr)
 vii. Pmax Winter Net (MW)
 viii. Pmin Winter Net (MW)
 ix. Qmax Winter Net (MVAr)
 x. Qmin Winter Net (MVAr)
xi. Name Plate MVA

4) AC Transmission Line
 a. Data Provider: Transmission Owner
 b. Data Submission: Model On Demand
 i. Ratings sets for different seasons will be uploaded via Model On Demand. For more information, see PJM’s Model On Demand Procedure Manual
 c. Data Requirements
 i. From bus – To bus – Ckt id
 1. For Zero impedance lines, start circuit ID with Z and use $R = 0.0000$, $X=0.0001$, and $B= 0.0000$
 iii. In-service status
 iv. Ratings:
 1. Rate A: Normal Rating
 2. Rate B: Short Term Emergency
 3. Rate C: Not required

5) DC Transmission Systems
 a. Data Provider: Transmission Owner
 b. Data Submission: Model On Demand
 c. Data Requirements

6) Transformer
 a. Data Provider: Transmission Owner
 b. Data Submission: Model On Demand
 c. Data Requirements:
 i. From Bus – To Bus – Ckt id
 ii. Nominal voltages of Windings
 iii. Impedance data: Specified R and X
 iv. Tap ratios
 v. Min and Max Tap position limits
 vi. Number of tap positions
 vii. Regulated bus
 viii. Ratings
 1. Rate A: Normal Rating
 2. Rate B: Short Term Emergency
 ix. In Service Status

7) Reactive Compensation
 a. Data Provider: Transmission Owner
b. Data Submission: Model On Demand

c. Data Requirements:
 i. Fixed Shunts
 1. G-Shunt (MW)
 2. B-Shunt (MVAr)
 3. In-service Status
 ii. Switched Shunts
 1. Voltage Limits (Vhi and Vlow)
 2. Mode of Operation (Fixed, Discrete, Continuous)
 3. Regulated Bus (If not fixed)
 4. Binit (MVAr)
 5. Steps and Step Sizes (MVAr)

8) Static Var Systems
 a. Data Provider: Transmission Owner
 b. Data Submission: Model On Demand
 c. Data Requirements
Appendix 2: Generator Owner Data Requirements

General Information

General Information (All Generators)
1. TO Area
2. Plant Name
3. Number of units at plant
4. Company Name
5. Name of Individual completing data
6. Email of Individual completing data
7. Phone of Individual completing data
8. EIA Plant Code
9. Commercial Operation Year

Location (All Generators)
1. State
2. County
3. City
4. Zip Code

Generator Capability (All Generators)
Note: Summer and Winter values are needed for all generator capability parameters

1. Name Plate (MVA)
2. Unit Maximum (MW)
3. Unit Minimum (MW)
4. Total Gross Energy (MW)
5. Auxiliary Load (MW)
 a. Auxiliary Load is related to the operations of the plant (e.g. fans, pumps, etc.)
 b. Load will have to be designated as
 i. Low voltage side of the GSU
 ii. High voltage side of the GSU
 iii. Location other than the two options above
6. Auxiliary load (MVAR)
 a. Auxiliary Load is related to the operations of the plant (e.g. fans, pumps, etc.)
7. Station Service Load (MW)
 a. Station Service load is necessary to support facility of the plant
 b. Load will have to be designated as
 i. Low voltage side of the GSU
ii. High voltage side of the GSU
iii. Location other than the two options above

8. Station Service Load (MVAR)
 a. Station Service load is necessary to support facility of the plant

9. Single line diagram

Total Reactive Power Capability at Max Gross Energy Output (All Generators)
Note: Summer and Winter values are needed for all reactive power capability at max gross energy output parameters

1. Leading (MVAR) - Under excited
2. Lagging (MVAR) – Overexcited

Synchronous Generator Parameters

1. Machine ID
 a. (e.g. ST, CT, CT1, CT2, ST2, etc.)
 b. Multiple Machines can be entered, 1 at a time
2. Prime Mover Code
3. Energy Source Code
4. MVA Base
5. Terminal Voltage (kV)
6. Nominal Power Factor
7. Unit maximum net capacity output (unit CIR) (MW)

8. Maximum Gross Output (MW)
 a. Summer and Winter values
9. Minimum Gross Output (MW)
 a. Summer and Winter values
10. Unit reactive power capability at max gross output – leading (MVAR)
 a. Summer and Winter Values
11. Unit reactive power capability at max gross output – lagging (MVAR)
 a. Summer and Winter Values
12. Unit auxiliary load at max gross output (MW and MVAR)
 a. Summer and Winter Values
13. Where is the auxiliary load connected?
 a. Low voltage side of the GSU
 b. High voltage side of the GSU
 c. Location other than the two options above
14. Any additional comments on the capability (Aux Load)

Generator Parameters
Note: All reactance and resistance values in PU on Machine MVA Base at machine terminal voltage
1. Combined turbine-generator-excitation inertia, \(H \) (kWs/kVA)
 a. \(0.5 < H < 15 \)
2. Speed damping coefficient, \(D \)
 a. MMWG Procedure Manual and NERC Case Quality Metrics require \(D=0 \)

Generator Saturation
1. Generator Saturation at 1.0 PU voltage, \(S \)
 a. \(0 < S_{1.0} \)
2. Generator saturation at 1.2 PU voltage, \(S \)
 a. \(S_{1.0} < S_{1.2} \)

Unsaturated Reactances
1. Direct axis synchronous reactance, \(X_d(i) \)
 a. \(X_d < 2.5 \)
2. Direct axis transient reactance, \(X'd(i) \)
 a. \(X' < (X_d/2) \)
3. Direct axis sub-transient reactance, \(X''d(i) \)
 a. \(X''d < X'd \)
4. Quadrature axis synchronous reactance, \(X_q(i) \)
 a. \(X_q < X_d \)
5. Quadrature axis transient reactance, \(X'q(i) \)
 a. \(X'q < X_q \)
6. Quadrature axis sub-transient reactance, \(X''q(i) \)
 a. \(X''q < X'q \)
7. Stator leakage reactance, \(X_l \)
 a. \(X_l < X''d \)
8. Negative sequence reactance, \(X_2(i) \)
9. Zero sequence reactance, \(X_0(i) \)

Saturated Reactances
1. Saturated sub-transient reactance, \(X''d(v) \)
 a. \(X''d(v) < X''d(i) \)
2. Transient reactance, \(X'd(v) \)
 a. \(X'd(v) > X''d(v) \)
3. Synchronous reactance, \(X_d(v) \)
 a. \(X_d(v) > X'd(v) \)
4. Negative sequence reactance, \(X_2(v) \)
5. Zero sequence reactance, \(X_0(v) \)

Resistances
1. DC armature resistance, \(R_a \) (Ohms)
2. Positive sequence resistance, \(R_1 \)
3. Negative sequence resistance, \(R_2 \)
4. Zero sequence resistance, \(R_0 \)

Time Constraints
1. Direct axis transient open circuit, \(T_{do} \) (sec)
 a. \(1. < T_{do} < 15 \)
2. Direct axis sub-transient open circuit, $T''do$ (sec)
 a. $0.01 < T''do < 0.2$
3. Quadrature axis transient open circuit, $T'qo$ (sec)
 a. $0.1 \leq T'qo \leq 4.0$
4. Quadrature axis sub-transient open circuit, $T''qo$ (sec)
 a. $0.01667 \leq T''qo \leq 0.5$
5. Armature three phase short circuit, $Ta3$ (sec)
 a. $0.02 \leq Ta \leq 1.0$

Stability Models
1. Generator Models, Relay Model & Frequency Relay Model
2. Excitation System ModelsPrime Mover and Governor Models
3. Static Var Compensator (SVC) & Frequency Changer Models
4. Power System Stabilizer Models
5. Maximum Excitation Limiter Models
6. Minimum Excitation Limiter Models
7. Compensation Models
8. Other documents

Wind Farm Parameters

1. Specify manufacturer
2. Specify model
3. MW Value per turbine (nominal rating)
4. Number of wind turbines generators of the selected type
5. Prime Mover Code
7. MVA base
8. Terminal voltage (kV)
9. Nominal power factor
10. Stator resistance, $R1$ (Ohms)
11. Saturated sub-transient reactance, $X''d(v)$ (PU on MVA base)
12. Type 4 turbine
 a. Yes
 b. No

13. Control Mode
 a. Power Factor
 b. Voltage control
 c. Other
14. Voltage relays
 a. Yes
 i. If yes, provide voltage relay settings and upload document
b. No

15. Frequency relays
 a. Yes
 i. If yes, provide frequency relay settings and upload document
 b. No

16. Additional windfarm compensation
 a. Yes
 i. Type of reactive compensation (e.g. fixed shunts, switchable shunt bank, dynamic)
 ii. Enter details related to compensation (e.g. number of caps, size, steps, etc.)
 b. No

17. Stability Models
 a. Generator Models, Relay Model & Frequency Relay Model
 b. Upload all applicable files
 c. Other documents

Inverter Based Parameters

1. Type of inverter based technology (e.g. solar, storage, etc.)
2. Prime Mover Code
3. Energy Source Code
4. Specify manufacturer of inverter
5. Specify model
6. MW Value per inverter (MW)
7. Total number of inverters
8. MVA Base per inverter
9. Terminal Voltage (kV)
10. Nominal power factor
11. Nominal output current at full load per inverter (Amps)
12. Maximum fault current output from the inverter (Amps or PU)
13. How fast can the inverter be disconnected from the system subsequent to a fault (Cycles)

14. Voltage Relays
 a. Yes
 i. If yes, provide voltage relay settings and upload document
 b. No

15. Frequency Relays
 a. Yes
 i. If yes, provide frequency relay settings and upload document
 b. No
16. Stability Models
 a. Generator Models, Relay Model & Frequency Relay Model
 b. Other documents

Circuit Breaker and Relay Parameters

1. Substation Name
2. Breaker Name
3. Manufacturer
4. Model Number
5. Nameplate Interrupting Rating (kA or MVA)
6. Nameplate Rating Type
 a. kA
 b. MVA
7. Nameplate Interrupting Time (Cycles)
8. Nameplate K-factor
9. Nameplate Max Design (kV)
10. Operating kV
11. Contact Parting Time (Cycles)
12. Protective Equipment 1 (e.g. generator, line, transformer)
 a. Specify specific protective equipment name (e.g. Peach Bottom unit 2 Generator, TMI- Hosensack 500 kV Circuit 1 Line)
13. Protective Equipment 2 (e.g. generator, line, transformer)
 a. Specify specific protective equipment name (e.g. Peach Bottom unit 2 Generator, TMI- Hosensack 500 kV Circuit 1 Line)
14. Interrupting Medium (e.g. Gas, Oil, Air, etc.)
15. Reclosing Time One (seconds)
16. Reclosing Time Two (seconds)
17. Required to Provide relay settings under PRC-024-2?
 a. Yes
 b. No
 c. N/A
 d. Comment
18. Upload PRC-024-2 Compliance Files

Transformers (Generator Step-Up, Main, and Load)

1. Transformer Id
2. MVA base
3. How many ratings does the transformer have?
 a. Select 1, 2, or 3
 b. Select cooling designation for each rating
 c. Enter MVA value for each rating
4. Core Type (for GMD)
5. K factor (for GMD)
6. Geomagnetically Induced Current (GIC) Blocking Device (for GMD)

Impedances - Positive and Zero Sequence (All values in PU on transformer MVA Base at winding nominal voltage)
1. High-side to low-side (Two winding and three winding)
 a. R
 b. jX
2. High-side to tertiary (Three winding only)
 a. R
 b. jX
3. Low-side to tertiary (Three winding only)
 a. R
 b. jX

DC Winding Resistance (Ohms/phase)
1. High Winding DC Resistance
2. Low Winding DC Resistance
3. Tertiary Winding DC Resistance (Three winding only)
4. Substation grounding DC resistance (ohms)

Winding Voltages (kV)
1. High-Side (kV) Nominal
2. Low-Side (kV) Nominal
3. Tertiary (kV) Nominal (Three winding only)
4. High-Side (kV) at tap setting
5. Low-Side (kV) at tap setting
6. Tertiary (kV) at tap setting (Three winding only)
7.

Winding Connection Types (Delta, Wye, Wye Gnd, etc.)
1. High side
2. Low side
3. Tertiary (Three winding only)
4. Is this an autotransformer?

Any additional comments on the transformer

Attachment Line Data
1. Voltage level (kV)
2. MVA base (set to 100 MVA, all impedances must be converted to system base of 100 MVA)
3. Attachment line length (miles)
4. Conductor type
5. Total branch positive sequence impedance
 a. R
 b. jX
6. Total branch zero sequence impedance
 a. R
 b. jX
7. Total branch charging susceptance
 a. B
8. Normal Rating (MVA)
9. Long-Term Emergency Rating (MVA)
10. Short-Term Emergency Rating (MVA)
11. Comments
Appendix 3: Detailed Data Requirements for Short Circuit

1) Bus
 a. Data provider: Transmission Owner
 b. Data Submission: Email
 c. Data Requirements:
 i. Bus Voltage: All buses are required to have a non-zero nominal voltage. The nominal voltages of buses connected by lines, reactors or series caps should be the same.
 ii. Bus Names: All BES bus names and voltages should be unique for BES facilities

2) Generating Units
 Existing Units
 a. Data Provider: Generator Owner
 b. Data Submission: Gen Model
 c. Data Requirements: See Appendix 2: Generator Owner Data Requirements for full Generation data requirements. This section is solely for Short Circuit
 i. Generator MVA Base
 ii. Generator saturated sub-transient reactance $X''d(v)$ in p.u.
 iii. DC Armature resistance (Ra) in ohms
 iv. Negative sequence resistance (R2)
 v. Negative sequence saturated reactance ($X2(v)$)

 Future Units
 a. Data Provider: Resource Planner
 b. Data Submission: Model On Demand
 c. Data Requirements: The Resource Planner will be responsible for providing the modeling data for future units
 i. Generator MVA Base
 ii. Generator saturated sub-transient reactance $X''d(v)$ in p.u.
 iii. DC Armature resistance (Ra) in ohms
 iv. Negative sequence resistance (R2)
 v. Negative sequence saturated reactance ($X2(v)$)

3) AC Transmission Line
 a. Data Provider: Transmission Owner
 b. Data Submission: Email
 c. Data Requirements
 i. From bus – To bus – Ckt id
 2. Positive, Negative, zero sequence data
iii. In-service status

4) DC Transmission Systems
 a. Data Provider: Transmission Owner
 b. Data Submission: Model On Demand
 c. Data Requirements

5) Transformer
 a. Data Provider: Transmission Owner
 b. Data Submission: Model On Demand
 c. Data Requirements:
 i. From Bus – To Bus – Ckt id
 ii. Nominal voltages of Windings
 iii. Impedance data: Specified R and X

6) Circuit Breakers
 a. Data Provider: Transmission Owners
 b. Data Submission: Email
 c. Data Requirements: For each BES circuit breaker the following data must be included in the data submittal:

 1. Substation Name
 2. Breaker Name
 3. Manufacturer
 4. Model Number
 5. Nameplate Interrupting Rating (kA or MVA)
 6. Nameplate Interrupting Time (Cycles)
 7. Nameplate K-factor
 8. Operating Voltage (kV)
 9. Nameplate Max Design kV (kV)
 10. Contact Parting Time (Cycles)
 11. Reclosing Time (Cycles)
 12. Protective Equipment 1 (e.g. generator, line, transformer)
 a. Specify specific protective equipment name (e.g. Peach Bottom unit 2 Generator, TMI- Hosensack 500 kV Circuit 1 Line)
 13. Protective Equipment 2 (e.g. generator, line, transformer)
 a. Specify specific protective equipment name (e.g. Peach Bottom unit 2 Generator, TMI- Hosensack 500 kV Circuit 1 Line)
 14. Interrupting Medium (e.g. Gas, Oil, Air, etc.)