NextEra Energy Transmission, LLC Company Evaluation and Constructability Information

For

DOM 5B – Transmission Line

Submitted to:

PJM,

November 17th, 2014

Signature Page

Approvals:

1/20	
John Deese	
Executive Director, Development	Date 11/17/2014
Cindy Tindell Cindy Tindell	
Vice President, Development	Date 11/17/2014
Inquiries:	
Questions and comments regarding this document should be referre	d to:
John Deese	
Executive Director, Development	
NextEra Energy Transmission, LLC	
700 Universe Boulevard, UST/JB	
Juno Beach, FL 33408	
Phone: 561-694-4624	
Email: john.deese@nexteraenergy.com	
Signature Page	
A. EXECUTIVE SUMMARY	
Name and Address of the Proposing Entity	
A general description of the proposed project The reliability problem(s) that the project is proposed to resolve	

	Total proposed project cost	2
	Overall schedule duration	3
	Entities that will be requesting Designated Entity status are required to submit a statement affirming that the	
	company pre-qualification information on record with PJM and as posted on PJM's website reflects the	
	company's current qualifications to be eligible for Designated Entity status as defined in the PJM Amende	d
	and Restated Operating Agreement ("PJM OA") in Section 1.5.8(a). The entity's PJM pre-qualification ID r	
	also be referenced	
	If the proposing entity seeks to be designated to construct, own, operate, maintain and finance the proposed	
	project or some portion of the project, the proposing entity must provide a statement within the project	
	proposal package stating the intent to be considered the Designated Entity for the proposed project	3
	D. COMPANY EVALUATION INFORMATION	,
	B. COMPANY EVALUATION INFORMATION	3
	Description of proposing entity's (or its affiliate, partner or parent company) technical and engineering	
	qualifications relevant to construction, operation and maintenance of the proposed project	3
	Detailed description of proposing entity's (or its affiliate, partner or parent company) experience in developing	3,
	constructing, operating and maintaining the types of transmission facilities included in the project proposi	al6
	Detailed description of proposing entity's (or its affiliate, partner or parent company) experience in adhering to	0
	standardized construction, maintenance, and operating practices, including the capability for emergency	
	response and restoration of damaged equipment;	8
	Detailed description of proposing entity's (or its affiliate, partner or parent company) experience in working in	
	geographical region in which the project has been proposed	9
	Detailed description of proposing entity's (or its affiliate, partner or parent company) experience in acquiring	
	rights of way with specific emphasis on the geographical region in which the project has been proposed	11
	Proposed financing plan for the project including discussion of any cost advantages available to the proposing	1
	entity as a result of their financing plan and structure	11
	Description of proposing entity's (or its affiliate, partner or parent company) managerial ability to contain cost	ts
	and adhere to construction schedules for the proposed project, including a description of verifiable past	
	achievement of these goals;	
	Details of any construction cost caps or commitment the proposing entity wishes PJM to consider in its analysi	is,
	including the conditions and exceptions to such construction cost caps or commitments (Note: As per the	
	Tariff, submittal of such proffered cost caps are at the discretion of the proposing entity but will be	
	considered by PJM in its analysis of the costs of various proposals)	14
	C. PROPOSED PROJECT CONSTRUCTABILITY INFORMATION	14
1.	Greenfield Transmission Line Element Detail	15
	A general description of the routing study area	
	Geographic description of any terrain traversed by the proposed new line or the study area	
	Route description by segment that includes lengths and widths and that classifies by:	
	Geographic map with proposed transmission line study area superimposed	
	Transmission facilities to be constructed by others	
2.	Environmental, Permitting and Land Acquisition	
	Assessment of environmental impacts related to all facilities (i.e. environmental impact study requirements,	
	environmental permitting, sediment, and erosion control issues)	16
	Right of way and land acquisition plan and approach for both public and private lands	
	Permitting plan and approach	10

Discussion of potential public opposition	20
PROJECT COMPONENT COST ESTIMATES	
Schedule	
On-going Transmission Facility Items	
Operations Plan	21
Maintenance Plan	
Assumptions	
Engineering and construction assumptions	

A. Executive Summary

Name and Address of the Proposing Entity

NextEra Energy Transmission, LLC 700 Universe Blvd UST/JB Juno Beach, FL 33408

A general description of the proposed project

NextEra Energy Transmission, LLC ("NEET") proposes to build a new 4.5 mile 115 kV line located in Cumberland County, Virginia. The line will begin at a deadend structure just north of the existing Bremo Bluff 115 kV substation. The line will run approximately 4.5 miles out to a fourway 115 kV tap point, running adjacent to the existing Bremo Bluff to Powerhatan 230 kV line. The line will be used to serve the loads sourced out of the Trices Lake and Cartersville 115 kV substations.

The reliability problem(s) that the project is proposed to resolve

The Bremo Bluff 115 kV substation currently has a radial line that serves load at the James River, Cartersville and Trices Lake 115 kV substations. The lines all converge at a single point, essentially creating a "four-way tap" that does not appear to have any disconnect switches or breakers. Therefore, a fault on the line will result in a loss of load for all three substations. The loss of load is expected to exceed 100 MWs by 2019, which results in a violation of Dominion's transmission planning criteria. Dominion does not allow for 100 MW's of load to be served off of a radial line.

Details of NEET's proposed transmission line can be found in Table 1.

Table 1: Characteristics of the proposed new line

Electrical and Physical Characteristics			
Project Description	New 115 kV line from from Bremo Bluff to 115 kV Tap		
From Substation	Bremo Bluff		
To Substation	Trice Lakes/Cartersville 115 kV tap		
Nominal Voltage	115 kV		
Technology	AC		

Line Length (mi)	4.5
Transmission Line	
Conductor	
Shield Wire	
Normal Rating	
(MVA)	
Emergency Rating	
(MVA)	
Tower Type	

NEET, working with evaluated a number of solutions to identify the most cost-effective proposal that would also maximize PJM's long-term reliability benefits. NEET's proposed transmission line project will divide the loads so that Cartersville and Trices Lake will be served off of NEET's proposed line, while James River will continue to be fed off of Dominion's existing 115 kV line from Bremo Bluff. By splitting the loads in this fashion, no one line will serve more than 100 MWs of load. A loss of either the existing Bremo Bluff line to James River, or NEET's proposed line would result in less than 100 MWs of load being lost.

The team modeled the solution in MUST and verified that it solved the need as demonstrated in the IDEVs and power flow cases.

Attachments are outlined below:

- Appendix 1: Potential Bremo Bluff 115 kV substation configurations (one-lines) to accommodate the new proposed transmission line
- Appendix 2: Revised list of contingencies associated with breaker failures at the interconnecting substations
- Appendix 3: MUST results

In summary, NEET's proposal resolves the reliability violation of Dominion's 100 MW Radial Load criteria, while not introducing any new issues into the transmission system.

Total proposed project cost

The total proposed project cost for a new transmission line using H-frame wood poles is estimated at \$6.1 million. A more detailed breakdown is included in Table 4 further in this application. Given the 30-day window, this is an indicative cost estimate. As the process continues, NEET will be able to firm up the projected costs.

Overall schedule duration

Total estimated duration is 26 months including permitting. Constrained by the 30 day window, only a high level, indicative schedule has been prepared for this project.

Assuming a Q1 2015 award by PJM, meeting an in-service date of June 2018 should not be an issue. A more detailed schedule is provided in Table 5 further in this application.

Entities that will be requesting Designated Entity status are required to submit a statement affirming that the company pre-qualification information on record with PJM and as posted on PJM's website reflects the company's current qualifications to be eligible for Designated Entity status as defined in the PJM Amended and Restated Operating Agreement ("PJM OA") in Section 1.5.8(a). The entity's PJM pre-qualification ID must also be referenced.

NEET affirms that its pre-qualification information on record with PJM and posted on PJM's website reflects the company's current qualifications to be eligible for Designated Entity status as defined in the PJM Amended and Restated Operating Agreement ("PJM OA") in Section 1.5.8(a). NEET's PJM pre-qualification ID is Q13-18.

If the proposing entity seeks to be designated to construct, own, operate, maintain and finance the proposed project or some portion of the project, the proposing entity must provide a statement within the project proposal package stating the intent to be considered the Designated Entity for the proposed project.

NEET is seeking to be designated to construct, own, maintain and finance the proposed transmission line. Based on NEET's approval from PJM in the prequalification process, we request Designated Entity status for this project. As the proposed transmission line will terminate at existing substations, NEET will not operate the new line.

B. Company Evaluation Information

Description of proposing entity's (or its affiliate, partner or parent company) technical and engineering qualifications relevant to construction, operation and maintenance of the proposed project

NextEra has over 50 years of technical expertise in engineering, constructing and operating large infrastructure projects, including transmission systems. NextEra owns and maintains more than 66,000 miles of distribution lines, approximately 8,200 circuit miles of transmission lines between 69 kV and 500 kV, and 750 substations across North America.

Additionally, NextEra is a nationally-recognized company which has a reputation for completing large transmission projects in a timely and cost-effective manner.

Florida Power & Light Company

FPL is the largest rate-regulated electric utility in Florida, and one of the largest in the United States. At December 31, 2013, FPL's assets totaled approximately \$36.49 billion, and FPL's generating resources for serving load consisted of 26,060 MW, of which 24,057 MWs were from FPL-owned facilities. FPL serves approximately 4.6 million customer accounts in Florida and is a leading employer in the state with approximately 10,000 employees. FPL operates and maintains approximately 1,106 miles of 500 kV transmission lines, including 4,624 structures and ten 500 kV substations.

Due to FPL's ongoing investment in smart, cost-effective and efficient technologies, FPL is able to provide the most affordable electric service in Florida. For example, FPL's typical residential customer bills continue to be the lowest of the state's 55 electric utilities (based on a 1,000 KWh typical bill) and 26% lower than the national average in 2012.

In addition, FPL's reliability was the best among Florida's investor-owned utilities during the last five years. In 2012, FPL achieved its best-ever overall reliability performance as measured by the System Average Interruption Duration Index ("SAIDI"), which measures the average time a customer is without power.

NextEra Energy Resources

NEER is primarily a competitive wholesale power generator, which operates a portfolio of facilities, totaling over 18,000 megawatts, from power plants in 24 states and Canada. Its electric output is sold to companies and businesses with an interest in clean energy, including utilities, retail electricity providers, power cooperatives, municipal electric providers and large industrial customers. It has earned a strong reputation in power plant development, construction, and operations based on standardized processes, best practices and superior execution.

Additionally, NEER leads the power industry through its focus on clean and renewable energy. For example:

• Approximately 96 percent of its electricity comes from clean or renewable sources, including wind, solar, nuclear, gas and hydro.

- NEER is the No. 1 generator of solar and wind power in North America. (Source: American Wind Energy Association and National Renewable Energy Laboratory)
- NEER uses clean-burning fossil fuel with natural gas facilities in five states.
- NEER has the third largest nuclear fleet in the country, which produces no greenhouse gases.

NextEra Energy Transmission, LLC

NEET currently owns and operates transmission utilities in New Hampshire and Texas, and is developing transmission projects throughout North America. Most recently, in August 2013, the Ontario Energy Board selected Upper Canada Transmission Inc. (UCT), a partnership of NextEra Energy Canada ULC, Enbridge Transmission Holdings Inc., and Borealis EWT Inc. as the designated developer for the East-West Tie, which involves construction of a new, approximately 250-mile long double circuit high-voltage electrical transmission line adjacent to an existing transmission line running between Thunder Bay and Wawa, Ontario which, in conjunction with the existing line, will increase capacity and reliability of electrical transmission between northeast and northwest Ontario. UCT prevailed in a competitive proceeding involving six applicants who submitted detailed proposals for the project.

In addition, Lone Star, a wholly-owned subsidiary of NEET, includes 293 miles of double circuit and 35 miles of single circuit 345 kV transmission line, using spun concrete and tubular steel monopoles with braced post insulators. The project traverses various terrains and geological conditions requiring multiple specialized foundation types. Each phase consisted of horizontal double bundled 1590 ACSS TW Falcon conductor. The project also required the construction of three large greenfield switching stations and two series compensation stations.

Lone Star's primary and backup energy management system ("EMS") is in Florida, and primary and back-up control centers are located in Austin, Texas for system operations. In addition to its Texas operations team, Lone Star relies on shared NextEra transmission and substation personnel, processes and procedures, and benefits from the operational efficiencies of a well-established shared services organization.

NextEra Energy Transmission will draw upon the resources of its affiliates to ensure successful project execution: *Florida Power & Light*, one of the leading utilities in the United States and *NextEra Energy Resources*, which is the largest developer of wind and solar energy generating facilities in the U.S.

NextEra companies have a long-standing presence in PJM as developers, owners, and operators of clean energy generation and transmission facilities that demonstrate that NEET can draw on these resources and experience to operate effectively and efficiently in the region.

Detailed description of proposing entity's (or its affiliate, partner or parent company) experience in developing, constructing, operating and maintaining the types of transmission facilities included in the project proposal

NextEra has a substantial engineering organization that will lead the execution of the Project. NextEra's design and engineering capabilities include:

- In-house engineering expertise in transmission line and substation engineering and design; civil and structure engineering; protection and control and communications systems expertise.
- Experienced transmission line designers and subject-matter experts that will develop the scope of work documents for the construction plan, including structure drawings, plan and profile drawings and construction specifications.
- Long-standing, collaborative relationships with many of the most experienced engineering firms in the power industry, which are already being used to support wind, solar, fossil, and transmission projects in development – bringing cost certainty and execution confidence.
- Strength in material and equipment procurement:
- Experienced in-house procurement staff with the ability to work though vendor selection;
- Long-standing relationships with vendors and significant buying power that allows us to access better pricing from reputable suppliers, as well as expedite purchase and delivery during critical times;
- Established procurement processes that incorporate quality, cost, reliability, financial stability, delivery, field support, safety track record, commitment to continuous improvement and innovation when selecting suppliers; and
- Practice of often buying major and critical equipment in advance, mitigating risks such as delivery delays or material cost escalation.

We have a depth of experience in the construction of transmission lines, substation facilities and related infrastructure. Our team has proven capabilities in constructing and managing high voltage transmission line projects in compliance with the design, reliability, and operation standards set forth by a variety of authorities in North America. Between 2007 and 2013, we completed over 1,100 miles of new transmission line construction at voltages ranging from 69kV to 500 kV and up to 500 miles in length. Our experience includes the full range of activities needed to support successful project development, including:

- Licensing and Permitting: We have extensive experience with licensing and permitting
 processes in PJM, as well as other jurisdictions. We have over 35 staff members who are
 specifically focused on permitting and licensing activities, and have the following
 capabilities:
- Experience developing strategy and planning for emerging Federal and State legislative and regulatory developments that have the potential to impact ongoing activities;
- Ability to evaluate and ensure compliance with the appropriate adherence to Federal,
 State and local environmental requirements including environmental audits;
- Expertise in identifying and obtaining required licenses and regulatory agency approvals
 to construct new non-utility fossil and renewable energy generating facilities, gas
 infrastructure and transmission facilities;
- Experience in performing environmental due diligence for potential acquisitions, divestitures and financings; and
- Experience promoting environmental relationships with external environmental groups, and integrating and communicating sustainability.
- Environmental and other regulatory approvals: We have numerous environmental
 professionals who work solely on new project development activities. They are involved
 in projects from the project concept stage through the first year of operation and bring
 the following capabilities:
- An emphasis on environmental sustainability and responsibility for assessing environmental issues and developing mitigation strategies; ensuring the timely receipt of environmental approvals; assisting project teams in understanding environmental regulatory requirements and ensuring environmental compliance during construction; and liaising with regulators;

- In-house aquatic environment experts, soils experts, wildlife biologists, geotechnical engineers and environmental engineers;
- Established environmental compliance monitoring program via a permit condition compliance matrix, regular compliance team meetings and formal environmental audits; and
- Relationships with qualified and trained environmental inspectors to monitor work being completed on the ROW, and specifically to identify any additional mitigation to ensure compliance.

Detailed description of proposing entity's (or its affiliate, partner or parent company) experience in adhering to standardized construction, maintenance, and operating practices, including the capability for emergency response and restoration of damaged equipment;

We have an extensive operations and maintenance team at NextEra, and NEET will leverage both internal and contractor resources for the safe, reliable and efficient operations and maintenance of the Project. Below are highlights of our O&M capabilities:

- We have access to over 750 power system professionals including technicians and other staff with expertise in all aspects of transmission and substation equipment installation, maintenance and repair. The Transmission Performance & Diagnostics Center (TPDC) in South Florida will serve as a hub for technical knowledge, as well as remote condition assessment and field asset health information in support of operations.
- We have experience with owning, operating and maintaining reactive power support and their associated control systems with 365 MVArs of synchronous condensers, 8,115 MVArs of transmission level manually switched capacitors, and 3000 MVArs of series compensation. Our assets include 345kV Reactive Power Compensation equipment. The total power transformer capability operated and maintained by NextEra affiliates is 160,002 MVA, of which 139,363 MVA is subject to NERC jurisdiction.
- Our staff oversees a large number of projects annually, including major system upgrades and maintenance initiatives at operating facilities, and supports O&M services to FPL, affiliates in 24 U.S. states and in 4 Canadian provinces and regulated transmission utilities in Florida, the ISO - New England and ERCOT (Texas) systems.
- As part of our experience in the Florida peninsula, we have faced and overcome a wide variety of operating challenges ranging from hurricanes, tornados, and other high wind

conditions, to salt spray contamination, avian interaction, lightning, and managing a peninsular system at the edge of the Eastern Interconnection. Every outage in the FPL transmission system is followed up by an Event Response Process in which we use diagnostic techniques to identify the root cause of a problem in order to prevent reoccurrence.

- Our staff's capabilities are confirmed by the low transmission outage rate. FPL
 exhibited top decile transmission reliability performance in a recent benchmarking
 study (2011 SGS Transmission Reliability Benchmarking Study, by SGS Statistical
 Services), which assessed utilities from across the United States
- Solutions to transmission O&M problems include new designs, new conditions assessment processes, and/or new products. Our staff often works directly with equipment manufacturers to develop these solutions in order to continually improve the reliability of our transmission systems. This background prepares us well to manage extreme geographic and climate conditions that we are likely to face in this Project.

Detailed description of proposing entity's (or its affiliate, partner or parent company) experience in working in the geographical region in which the project has been proposed

Below is a table that highlights Nextera's transmission projects in the PJM region.

Table 2: PJM Territory Transmission projects

Description	Location	Voltage Level	Length (miles)	Nominal Rating	Service Year	Project Sponsor Responsibility
MARCUS HOOK (MH 50	USA, PA	Level	(miles)	- Tathig	Tear	псэронэвшту
Substation)	,					
Number of Breakers: 1						
Bus Configuration: Single						
MARCUS HOOK (MH 750	USA, PA					
Substation)						
Number of Breakers: 1						_
Bus Configuration: Ring						
MEYERSDALE WIND	USA, PA					
(Meyersdale North)						
Number of Breakers: 1						_
Bus Configuration: Single						
MOUNTAINEER WIND	USA, WV					
<u>ENE</u>						
Construction: Overhead						
Pole Material: Wood						
Pole Configuration:						
Monopole						
# of Circuits: 1						
SAYREVILLE (Sayreville	USA, NJ					
Substation)						
Number of Breakers: 7						
Bus Configuration:						
Double	LICA DA					
WAYMART WINDFARM	USA, PA		 ,			
(Brownell) Number of Breakers: 1						
Bus Configuration: Single	LICA DA					
WAYMART WINDFARM Construction: Overhead	USA, PA		_			
Pole Material: Wood						
Pole Configuration:						
Monopole						
# of Circuits: 1						
5. 6 6865. 2						

Detailed description of proposing entity's (or its affiliate, partner or parent company) experience in acquiring rights of way with specific emphasis on the geographical region in which the project has been proposed

NextEra and its subsidiaries, including NEET, have decades of experience in acquiring ROW for energy infrastructure across North America. In constructing a transmission project, many of NextEra's business organizations, such as Land Services, Law, and Environmental Services, are involved and responsible for negotiating and acquiring the necessary land interests for a project, as well as providing an active field presence through the corridor and route selection process and the environmental assessment phase in support of regulatory applications.

This effort includes active involvement in various open houses, informal meetings, and individual consultation with stakeholders that are directly impacted, directly adjacent, and within a prescribed radius of a project. Following the routing process, the responsible NextEra business organization engages in discussions with directly impacted landowners to negotiate and acquire the necessary land interests to support project execution and completion. The schedule to complete acquisition of required land for projects is typically 8-12 months, with potential right of entry processes following receipt of primary permit. Right-of-entry processes typically take 18-20 weeks.

Eminent Domain

To the extent that easements over private property are required for the construction of transmission facilities, NEET is committed to contacting each landowner in an effort to negotiate the voluntary purchase and sale of an easement based on an analysis of all relevant factors so that the landowner is offered the fair market value for the easement.

Only after negotiations have failed, and as a last resort, will NEET seek to acquire an easement through the exercise of eminent domain power as a public utility. Although the eminent domain processes vary by state, as a general matter, NEET would be required to pay just compensation to the owner based on the market value of the easement rights acquired.

Proposed financing plan for the project including discussion of any cost advantages available to the proposing entity as a result of their financing plan and structure.

NEET benefits from the extensive, enterprise-wide financial resources of NextEra. A Fortune 200 company, NextEra's year-end 2013 balance sheet included over \$69 billion of assets and \$16 billion of shareholder equity, with more than 70% of NextEra's \$15 billion in 2013 revenues derived from regulated utility sources. Consequently, NEET, through its parent company, has the financial capacity to finance, develop, construct, operate and maintain projects over the

long-term. NextEra has access to and regularly secures financing in public debt and equity markets, and it is committed to supporting NEET at the outset with plans to subsequently access the capital markets to raise long-term project financing as a stand-alone entity once projects pass major milestones. Further, NEET has access to substantial credit lines, which can be readily accessed.

Current and historical financial information related to NextEra, including Annual Reports and financial statements filed with the Securities and Exchange Commission can be obtained from the following links:

NextEra- Annual Reports¹

NextEra- Financial Statements²

NextEra Energy Capital Holdings

NextEra Energy Capital Holdings, Inc. ("NEECH") is a wholly-owned subsidiary of NextEra which holds ownership interests in and provides funding for NextEra's operating subsidiaries other than FPL. As of September 30, 2013, NEECH had over \$4.4 billion of net available liquidity, primarily consisting of bank revolving line of credit facilities and cash equivalents, less letters of credit issued under the credit facilities, and commercial paper outstanding.

NEECH relies on access to credit and capital markets as significant sources of liquidity for capital requirements, and other operations that are not satisfied by operating cash flows. NEECH's current credit ratings are as follows:

Company	Moody's	S&P	Fitch
NEECH	Baa1	A-	A-

Description of proposing entity's (or its affiliate, partner or parent company) managerial ability to contain costs and adhere to construction schedules for the proposed project, including a description of verifiable past achievement of these goals;

NEET is aware that a well-intentioned project schedule can be rendered meaningless unless the entity preparing such schedule has the experience, team, resources and track record to stand behind and deliver on the proposed schedule. Since 2003, NextEra has constructed 91 new,

² Link references www.investor.nexterenergy.com

.

¹ Link references www.investor.nexterenergy.com

stand-alone infrastructure projects of which 89% were completed on time or early, and an overall average of 18 days early. Note that every one of these projects included a transmission component. All stand-alone transmission projects in this timeframe have been delivered on time. In the aggregate, these projects represent over \$23.2 billion of capital expenditures. Table 3 provides a summary of our ability to meet project schedules across various projects, including transmission solutions.

Table 3: NEET's ability to meet project schedules

Type of Project	Number of Projects	% On Time or Early	Avg. Days Ahead of Schedule
Transmission	3	100%	22
Solar	8	100%	35
Wind	71	87%	18
Gas	9	89%	27
Total	91	89%	18

NEET, by being able to draw from the expertise across NextEra, supplemented with key consultant expertise, has the capacity to successfully execute all aspects of the Project, on-time and within budget. NextEra's project management experience in managing and adhering to scope and schedule for transmission projects is highlighted by summaries of the two following projects:

Blythe Energy Project: This 230 kV transmission interconnection line - located approximately seven miles west of the California and Arizona border – is an excellent example of a challenging project that was delivered ahead of schedule and under budget. The 67 mile, single and double circuit 230 kV transmission line was built to interconnect NextEra Energy's 520 MW natural gasfired Blythe Energy Plant with the Southern California Edison (SCE) 230 kV transmission grid at the Julian Hines Substation. The line paralleled existing 161 kV and 500 kV lines for 30% of the route and was constructed within a 100-foot right of way. The Blythe Plant was awarded a Power Purchase Agreement with SCE, which included daily penalties of \$250,000 for failure to deliver plant energy by an agreed upon date using the transmission line. Additionally, the project was built in environmentally sensitive Desert Tortoise and Mojave Fringe-Toed Lizard habitat in the Mojave Desert in Southeastern California. The project required cultural, archaeological, biological, paleontological and Native American inspectors on site during all periods of construction. In addition, the new line crossed numerous existing transmission lines and paralleled a major gas infrastructure line into Southern California, creating various design and execution challenges. NextEra Energy, in conjunction with Southern California Gas (SCG), initiated pipeline mitigation studies and identified mitigation improvements, and SCG constructed the improvements. Despite these challenges, the project was completed approximately 25% below its original budget of \$100 million and 51 days ahead of schedule.

Lone Star Transmission's CREZ Project: This project is another example of superior management of project scope and schedule. Lone Star's transmission system consists of 300 miles of double circuit and 30 miles of single circuit 345 kV transmission lines, broken into three segments, with five 345 kV substations. Managing a project which traverses a long distance and diverse terrains presents scope and schedule challenges. The Lone Star project team used geographic information system (GIS) based project management software to coordinate land acquisition and construction activities, as well as to track progress, report to management and document quality assurance and quality control processes. Using Primavera software, the project team conducted weekly project schedule reviews, including validation sessions with management and monthly executive dashboard reviews on all work streams. The project team also participated in regular engineering design reviews; assisted in managing the coordination of design criteria, system studies, equipment and material specifications, procurement and relay protection settings with all interconnecting utilities in Texas; and ensured that all required changes were executed according to NextEra's change management processes. The Lone Star Team was able to effectively manage design and construction of this larger complex project and complete it on time and more than \$50 million under budget.

As with the other comparable projects described above and throughout this application, NEET will employ best practices in project management, including rigorous adherence to schedule and effective oversight, to complete the Project. These proven project management techniques, as well as our transmission and substation experience, will be used to ensure timely project delivery and cost control.

Details of any construction cost caps or commitment the proposing entity wishes PJM to consider in its analysis, including the conditions and exceptions to such construction cost caps or commitments (Note: As per the Tariff, submittal of such proffered cost caps are at the discretion of the proposing entity but will be considered by PJM in its analysis of the costs of various proposals)

With only 30 days for the Short-Term Voltage proposal window, NEET's cost estimate is indicative. However as the proposal progresses and subject to further dilligence, NEET reserves the right to submit a firm, binding cost with a cap. With a record of completing transmission projects ahead of schedule and under-budget, a cost cap may best allow PJM and the rate payers to benefit from the experience and efficiencies NEET is able to offer.

C. Proposed Project Constructability Information

Provide a general description which identifies the elements that comprise the component

1. Greenfield Transmission Line Element Detail

A general description of the routing study area

Most of the route traverses a mix of woods and open space. There is one railroad crossing.

Geographic description of any terrain traversed by the proposed new line or the study area

This easement is assumed to run north of the existing transmission right of way for a length of approximately four and a half miles with a 100-foot width. Aerial views do not indicate any encroachments on existing structures so damages do not appear to exist. Most of the route traverses a mix of woods and open space. There is one railroad crossing.

Route description by segment that includes lengths and widths and that classifies by:

New ROW: 4.5 miles long, 100 feet wide

Expansion of Existing ROW: None, Transmission Line runs parallel to existing ROW

Proposed Use of Existing ROW: None, Transmission Line runs parallel to existing ROW

Geographic map with proposed transmission line study area superimposed

See Appendix 5 for an overall view of the line with USGS Topographic background.

Optional supporting information:

Drawings for typical structure types – See Appendix 6

Transmission facilities to be constructed by others

NEET is responsible for construction of the new proposed transmission line up to a dead-end structure to be located just outside of the Bremo Bluff 115 kV substation. NEET assumes that the incumbent transmission owner will be responsible for taking the line from the dead-end structure and terminating it into the substation, along with any proposed substation modifications. Additionally, NEET assumes that the incumbent transmission owner will be responsible reconfiguring the existing 115 kV four-way tap to Bremo Bluff, James River, Cartersville and Trices Lake.

Bremo Bluff 115 kV interconnection work including (see Appendix 1)

• Expanding footprint of the existing substation

- Installing new buswork to accommodate the proposed breaker and line termination
- NEET will terminate proposed line at a dead-end structure outside of the substation,
 NEET assumes substation owner will be responsible for bringing the line into the substation and connecting it to the substation

Bremo Bluff 115 kV Four-way Tap Reconfiguration

- Reconfigure tap so that the lines going to Trices Lakes and Cartersville ties with NEET's new Bremo Bluff 115 kV line
- Reconfigure tap so that the line going to James River will remain tied to Dominion's
 Bremo Bluff 115 kV line

2. Environmental, Permitting and Land Acquisition

The proposing entity shall include:

Assessment of environmental impacts related to all facilities (i.e. environmental impact study requirements, environmental permitting, sediment, and erosion control issues)

NextEra Energy Transmission, LLC (NextEra) understands that with any land development or utility line construction project, sufficient due diligence and agency coordination will be required to ensure full compliance with all federal, state, and local laws and ordinances. NextEra has the experience and local team to successfully navigate complex permitting paths to successfully obtain all necessary permits to bring this project to fruition. Given the early stage of this process, this permitting summary is based on a high level review for purposes of the bid package and is based on what NextEra currently knows about the sites assuming a typical permitting process on private land for a transmission project in Virginia.

NextEra will first identify and delineate regulated natural resources such as wetlands, high quality and/or natural reproduction trout streams, threatened and endangered species (T&E), other unique habitats and cultural resources (such as historical structures and archaeological artifacts). All of these resources will be identified by experienced biologists and cultural resource specialists to make sure appropriate permits are in place sufficiently prior to construction. Close coordination with NextEra's engineering and construction team will ensure they take into account during the siting process as to what areas are off limits or have severe limitations or restrictions that could make the permitting more complicated than necessary. Issues that commonly hamper a project's progress may include wetland issues or impacts, the presence or potential presence of T&E species or the presence of cultural resources. To

minimize complexity and timing of permitting, NextEra recommends that the following features be avoided by proposed Project facilities:

- Jurisdictional waters (define locations of NHD and NWI water bodies),
- Areas with T&E plant and wildlife species or habitat, and
- Archaeological resources.

Summary of Methods

For purposes of this bid, NextEra hired to complete a high level desktop routing analysis of the proposed 4.5 mile route. Environmental and cultural constraints within the proposed project area were evaluated using a combination of online database resources, GIS and available desktop information.

Potential Siting Issues Related to Environmental and Cultural Impacts

A summary of potential environmental and cultural resources that may be impacted by the transmission line corridor are summarized below. However, verification of actual potential impacts can only be completed through future field studies of the final selected transmission line corridor route.

Potential Environmental Impacts

Water bodies:

- James River anadromous fish use reach, state/federal T&E waters; should not be an issue with permitting so long as no tower construction within the river itself is required
- Multiple mapped streams/tributaries to James will need to avoid for access and structure location
- Sensitive Lands:
- Virginia Outdoors Foundation (VOF) Easement on north/west banks of James River state designated public agency, does receive federal funding through grant awards, unclear if this area was conserved using federal funds and what, if any, NEPA would be required for additional easement
- No significant wetland features noted
- Species of Concern:

- DGIF and DCR note freshwater mussels proper E&S and no instream work will avoid impacts to these species
- No vascular plants noted
- Clearing of forested areas will likely require coordination with DGIF for Northern Long Eared Bat (proposed species) – surveys and/or time of year restrictions may be required
- Cultural Resources:
- Archaeological resources noted within and in the vicinity of the ROW; Phase 1
 archaeology likely required for ROW expansion and substation construction area
- Architectural Resources several determined eligible resources, most would not be an issue as there is an existing corridor, power plant and transmission lines. Two are of concern:
- Glen Arvon (ID# 032-0015) is listed on the National Register of Historic Places (NRHP)and Virginia Landmarks Registry (VLR); the mapped boundaries of this site are generally consistent with the VOF conservation lands. Construction of an additional line may adversely impact this resource and require mitigation.
- Duncan's Dairy Farm (ID#024-0080) is eligible for listing on the NRHP; located south of proposed substation site; viewshed study may be required; existing vegetation may provide sufficient shielding from portions of the site

Right of way and land acquisition plan and approach for both public and private lands

Key elements in NEET's approach to the landowner negotiation process for this project, and other projects in PJM, include:

- Proactively conducting a market analysis of land values in the project area;
- Producing a fair and comprehensive land acquisition plan and schedule for securing necessary land rights and site control;
- Utilizing local land acquisition teams knowledgeable of the project area; and
- Taking a transparent approach in discussing the project and NEET development interests in the subject property.

While NEET will negotiate an agreement with the landowners of the proposed project route, NEET's landowner engagement process does not stop here. NEET's philosophy for landowner relations is to work with residents during all phases of a project to address issues as they arise, before and after land rights acquisition. NEET is committed to serving as the point of contact for residents, whether directly or indirectly affected by the project, for the duration. We use a collaborative and consultative approach to working with landowners, focusing on regular communication, to understand and address issues on an ongoing basis. NEET is also committed to using design and construction techniques that minimize impacts on private lands, and to restoring the construction sites of our projects to be both good stewards of the environment and good neighbors in the communities in which we live and work.

Permitting plan and approach

NextEra has assembled an excellent team of legislative and regulatory liaisons as well as local and national experts with experience in all aspects of development, permitting, construction and operations. NextEra has successfully completed the Project site screening and believe we have what it takes to get the Project done in a cost efficient and timely manner. NextEra proposes additional environmental due diligence activities to further refine the future plans to provide a successful project with PJM.

- 1. NEET will contract with a firm with extensive Virginia regulatory experience to assist with regulatory strategy, environmental documentation, permit acquisition, environmental plan preparation, resource surveys, monitoring and environmental compliance.
- 2. NEET plans to conduct as much up-front environmental analysis as possible. This includes conducting habitat assessments and protocol-level special-status species surveys.
- 3. NEET has conducted preliminary desktop environmental and permitting analysis of the project route which provides an initial understanding of the regulatory requirements to ensure on time execution of the project.
- 4. NEET will develop and execute a detailed project implementation plan following project award. This implementation plan will be a living document that will include the approach for scheduling and conducting agency meetings, detailed site surveys during proper survey windows, obtaining discretionary environmental permits, and developing an environmental compliance program to carry out agency commitments.

- 5. NEET has developed a preliminary schedule which includes the permitting tasks. This schedule shows the longest and more conservative permitting time line which is part of the project critical path. This sequence and timeline is used in developing the cost estimate for permitting activities.
- 6. Permitting is estimated to take approximately 18 months.

Discussion of potential public opposition

In general, the purpose of the community outreach plan is to ensure that the proposed project is supported by the community, in particular the affected community(ies), to enable NextEra to expeditiously comply with all relevant regulatory requirements that would permit timely construction and operation of the proposed project. All community outreach will be coordinated with PJM. The specific high level goals of the community outreach plan are the following:

- Identify potential issues before they become a problem by early engagement with key community stakeholders;
- Broaden the community engagement process to identify potential and relevant community benefits that can facilitate community support for the proposed project;
- Call to action develop a broad base of community support for the proposed project before the regulatory agencies; and
- Develop a comprehensive administrative record documenting the community outreach process that can be presented to the regulatory agency or, in the event of a legal challenge, to the appropriate court.

The plan proposes to dedicate considerable time and resources in engaging the community, and specifically the affected community during the planning process to identify highly sensitive areas that have the least amount of cultural, environmental and social impacts on the community. The plans will reflect avoidance of impacts rather than mitigation. However, in some cases, if avoidance is not possible, then we need to involve the community in providing appropriate and practical mitigation measures.

3. Project Component Cost Estimates

A table listing construction cost estimates for each proposed component shall be provided.

At a minimum, cost estimates shall be included with the following level of detail, along with the total.

Table 4: NextEra's Construction cost estimates

Catagory	(\$MM)
Material	
Construction and Engineering	
Overhead (Corporate,etc)	
Escalation	
Contigency	
Land Acquisition	
Permitting	
Incumbent Upgrades / Performed by Others	
SUBTOTAL	\$6.10

Please Note: Overhead is included in the construction cost, however maintenance is estimated at \$55,000 per year.

4. Schedule

Table 5: A milestone schedule, including the following major milestones, shall be provided for each proposed component

Schedule Milestones	<u>Date</u>
Project Award	Q1 2015
Permitting Complete	11/5/2017
Land Control	12/5/2017
Start Construction	1/5/2018
Project COD	6/1/2018

5. On-going Transmission Facility Items

Operations Plan

The package shall contain the proposing entity's plan for operating the new transmission facilities for the proposed project. At a minimum, the plan should discuss the proposing entity's plan for securing a control center facility and provide required telemetry to PJM.

NEET will own and maintain the line; however, the incumbent utility will remain the responsible party for the operation of the line.

Maintenance Plan

The package shall contain the proposing entity's plan for maintaining the new transmission facilities for the proposed project including equipment spares.

NEET has well-established, reasonable practices and procedures for maintenance of its transmission and substation facilities. Its individual transmission projects have maintenance practices and programs built on industry best practices at NextEra, and proven processes and standardized procedures honed through years of experience, to enable cost-effective, safe and reliable operation. NEET will leverage this experience to create a maintenance plan for the proposed project that will comply with all applicable PJM maintenance requirements and regulating authorities.

NextEra companies are responsible for line maintenance on approximately 7,900 miles of the bulk electric system and the operation maintenance of over 700 substations across all the NERC jurisdictions in North America. The total power transformer capability of NextEra companies is 160,002 MVA, of which 139,363 MVA is subject to NERC jurisdiction.

NEET will leverage in-house and third-party resources for the safe, reliable and efficient maintenance of the project. In particular, NEET will bring significant O&M capabilities as outlined below:

- Well-established O&M practices and standardized processes, which are already being used at NextEra's operating EHV transmission facilities.
- Access to over 766 power system professionals, including technicians and other staff, with expertise in all aspects of transmission and substation equipment installation, maintenance and repair. Many of these personnel will provide support to NEET through our Power Delivery Performance & Diagnostic Center (PDDC) located in south Florida. This center serves as a hub for technical knowledge, as well as remote condition assessment and field asset health information, in support of operations.
- Experiences from operating and maintaining power delivery assets in all NERC jurisdictions at voltages up to 500kV
- An excellent record of transmission and substation reliability, built on robust design and O&M programs that incorporate condition assessment, diagnostics, and asset management for effective and efficient investment of resources and capital.

• Experience addressing a wide variety of operating challenges ranging from hurricanes, tornadoes, and other high wind conditions, dust contamination, avian interaction, and lightning. For example, every outage in the FPL transmission system, as well as the Lone Star system, is followed up by an Event Response Process in which NextEra uses diagnostic techniques to identify the root cause of a problem to prevent reoccurrence. Solutions to transmission O&M problems include new designs, new conditions assessment processes, and/or new products. NextEra often works directly with equipment manufacturers to develop these solutions in order to continually improve the reliability of its transmission systems. This has prepared us well to manage extreme geographic and climate conditions that NEET is likely to face in future projects.

The NextEra framework that provides control, audit and oversight of maintenance for its transmission and substation assets is called the Op Model. NextEra's Op Model is a centralized database of its transmission and substation processes. For each process the Op Model provides, where applicable: overview, flowcharts, procedures, forms, standards, training and support application tools. For all of NextEra's transmission and substation facility needs the Op Model provides key processes and procedures to support standards of equipment maintenance, including: Safety; Risk; NERC & Environmantal Compliance; Training; Contingency Planning; Restoration; Right of Way; Switching; Maintenance; Testing; Work Management; Protection; Reliability Metric;, Troubleshooting and Event Response.

The existing NextEra maintenance plan covers all elements of the proposed project. NextEra practices are controlled by a formalized program of procedures and processes and reinforced by continuous monitoring and condition assessment practices.

NextEra transmission line patrols, inspections and maintenance practices address: Conductor, (overhead ground wire and optical fiber ground wire); Bonding and grounding ;Guys and anchors; Hardware; Insulators; Rights-of-way; Structures and foundations; Thermography inspection; Corona inspection; Vegetation Management

6. Assumptions

A list of assumptions, uncertainties and / or qualifiers that may impact the estimated costs and schedules must be identified.

Engineering and construction assumptions

• Pending final geotech analysis, subsurface risk could drive the cost for foundation and pole structures.

- Pending land acquisitions could impact route length and design increasing cost and possibly impacting schedule.
- High-level estimates provided for the work to be completed by the incumbent as NEET does not have access to the detail necessary to provide true estimates:
- Cost of substation work at Bremo Bluff 115 kV
- Cost to terminate the line into the Bremo Bluff 115 kV substation
- Cost to reconfigure the four-way 115 kV tap that serves the Cartersville, James River, and Trices Lake 115 kV substations.

