PJM RTEP – 2017 RTEP Proposal Window #1
Problem Statement & Requirements Document

Scope: 2022 Summer Reliability Analysis; 2022 Winter Reliability Analysis; 2022 Light Load Reliability Analysis

PJM Interconnection

Original Document: July 11, 2017
Version 1
Email: ProposalWindow-Admin@pjm.com or ProposalWindow-Tech@pjm.com with any questions or clarifications and include a reference to 2017 RTEP Proposal Window #1

2017 RTEP Proposal Window #1

I. Purpose of Proposal Window

PJM seeks technical solution alternatives (hereinafter referred to as “Proposals”) to resolve potential reliability criteria violations on facilities identified below in accordance with all applicable planning criteria (PJM, NERC, SERC, RFC, and Local Transmission Owner criteria).

II. Criterion applied by PJM for this proposal window:

A. 2022 Summer Reliability Analysis
 a. N-1
 b. Generator Deliverability
 c. Load Deliverability
 d. N-1-1

B. 2022 Winter Reliability Analysis
 a. N-1
 b. Generator Deliverability
 c. Load Deliverability
 d. N-1-1

C. 2022 Light Load Reliability Analysis
 a. N-1
 b. Generator Deliverability
 c. Load Deliverability
 d. N-1-1

III. Terminology

For Proposal windows, PJM will distribute an electronic workbook of potential violations on facilities identified through a series of analyses. The following column headings are generally representative of the data fields that will be used to identify the specific facility and other factors of the output of this analysis. Not all column headings will appear in every sheet within the workbook. Additional information deemed necessary by PJM will be provided on a separate sheet along with the results file.
Typical thermal analysis column headings:

<table>
<thead>
<tr>
<th>Column Headings</th>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FG #</td>
<td>Flowgate Number</td>
<td>A sequential numbering of the identified potential violations</td>
</tr>
<tr>
<td>Fr Bus</td>
<td>From Bus Number</td>
<td>PSSE model Bus number corresponding to one end of line identified as a potential violation</td>
</tr>
<tr>
<td>Fr Name</td>
<td>From Bus Name</td>
<td>PSSE model Bus name corresponding to one end of line identified as a potential violation</td>
</tr>
<tr>
<td>To Bus</td>
<td>To Bus Number</td>
<td>PSSE model Bus number corresponding to other end of line identified as a potential violation</td>
</tr>
<tr>
<td>To Name</td>
<td>To Bus Name</td>
<td>PSSE model Bus name corresponding to other end of line identified as a potential violation</td>
</tr>
<tr>
<td>Monitored Facility</td>
<td>Monitored Facility</td>
<td>The circuit on which a potential violation is occurring</td>
</tr>
<tr>
<td>Base Rate (MVA)</td>
<td>Base Rate (MVA)</td>
<td>Normal Facility Rating (Rate A)</td>
</tr>
<tr>
<td>% Overload</td>
<td>Percentage Overload</td>
<td>Percentage above base rate</td>
</tr>
<tr>
<td>CKT</td>
<td>Circuit</td>
<td>Circuit number of identified potential violation</td>
</tr>
<tr>
<td>KVs</td>
<td>Kilovolt level (A/B)</td>
<td>Kilovolt level of both sides of potential violation, if A does not equal B, potential violation is a transformer</td>
</tr>
<tr>
<td>Areas</td>
<td>Area Numbers (A/B)</td>
<td>Area numbers of both ends of potential violation (A=From Bus Area Number, B=To Bus Area Number) If A does not equal B, potential violation is a tie line</td>
</tr>
<tr>
<td>Rating</td>
<td>Line Rating</td>
<td>Applicable Thermal rating (MVA) of line</td>
</tr>
<tr>
<td>DC Ld(%)</td>
<td>Direct Current Loading percentage</td>
<td>Percentage above 'Line Rating' determined from DC testing</td>
</tr>
<tr>
<td>AC Ld(%)</td>
<td>Alternating Current Loading percentage</td>
<td>Percentage above 'Line Rating' determined from AC testing</td>
</tr>
<tr>
<td>Cont Type</td>
<td>Contingency Type</td>
<td>Contingency Categorization (potential options include: Single, Bus, Line_FB, Tower)</td>
</tr>
<tr>
<td>Cont Name</td>
<td>Contingency Name</td>
<td>Contingency Name as identified in associated contingency file or embedded in the spreadsheet</td>
</tr>
<tr>
<td>Contingency</td>
<td>Contingency</td>
<td>Contingency Description</td>
</tr>
<tr>
<td>Violation Date</td>
<td>Violation Date</td>
<td>Date on which violation is expected to occur</td>
</tr>
<tr>
<td>Analysis Case</td>
<td>Analysis Case</td>
<td>Case title to use in replicating analysis</td>
</tr>
</tbody>
</table>
Typical voltage analysis column headings:

<table>
<thead>
<tr>
<th>Column Headings</th>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FG #</td>
<td>Flowgate Number</td>
<td>A sequential numbering of the identified potential violations</td>
</tr>
<tr>
<td>Bus #</td>
<td>Bus Number</td>
<td>PSSE model Bus number corresponding to bus identified as a potential violation</td>
</tr>
<tr>
<td>Name</td>
<td>Bus Name</td>
<td>PSSE model Bus name corresponding to bus identified as a potential violation</td>
</tr>
<tr>
<td>KV</td>
<td>Kilovolt level</td>
<td>Kilovolt level of bus identified as potential violation</td>
</tr>
<tr>
<td>Area</td>
<td>Area Number</td>
<td>Area number of bus identified as potential violation</td>
</tr>
<tr>
<td>ContVolt</td>
<td>Contingency Voltage (P.U.)</td>
<td>Per Unit Voltage at identified bus after contingency is applied</td>
</tr>
<tr>
<td>BaseVolt</td>
<td>Basecase Voltage (P.U.)</td>
<td>Per Unit Voltage at identified bus before contingency is applied</td>
</tr>
<tr>
<td>Low Limit</td>
<td>Low Voltage Limit(P.U.)</td>
<td>Threshold of Per Unit Low voltage, if ContVolt is under this limit, a potential violation is identified</td>
</tr>
<tr>
<td>Upper Limit</td>
<td>High Voltage Limit(P.U.)</td>
<td>Threshold of Per Unit High voltage, if ContVolt is over this limit, a potential violation is identified</td>
</tr>
<tr>
<td>Cont Type</td>
<td>Contingency Type</td>
<td>Contingency Categorization (potential options include: Single, Bus, Line_FB, Tower)</td>
</tr>
<tr>
<td>Vdrop(%)</td>
<td>Voltage drop</td>
<td>The Percentage that the voltage has dropped as a result of the contingency</td>
</tr>
<tr>
<td>Contingency</td>
<td>Contingency Name</td>
<td>Contingency Name as identified in associated contingency file</td>
</tr>
<tr>
<td>Contingency 1</td>
<td>First Contingency</td>
<td>N-1 (First) Contingency identified</td>
</tr>
<tr>
<td>Contingency 2</td>
<td>Second Contingency</td>
<td>N-1-1 (Second) contingency identified in N-1-1 analysis</td>
</tr>
<tr>
<td>Violation Date</td>
<td>Violation Date</td>
<td>Date on which violation is expected to occur</td>
</tr>
<tr>
<td>Analysis Case</td>
<td>Analysis Case</td>
<td>Case title to use in replicating analysis</td>
</tr>
</tbody>
</table>

IV. Analysis Procedure

PJM Planning follows a documented procedure for all RTEP analysis as set forth in PJM Manual 14B. This problem statement requires participants to perform analysis and identify solutions to potential violations identified using RTEP procedures detailed in Manual 14B:

http://pjm.com/~/media/documents/manuals/m14b.ashx

Additionally, all proposed solutions must meet the performance requirements outlined in PJM Transmission Owner Criteria:

http://www.pjm.com/planning/planning-criteria/to-planning-criteria.aspx

PJM performs a preliminary quality assessment of the analysis in coordination with PJM Transmission Owners, Generation Owners, Neighboring Transmission Owners, and any other affected parties. In this quality assessment PJM reviews potential violations as determined by
the analytical tools used throughout RTEP analysis. Through this coordination PJM seeks to identify only the violations for inclusion in the proposal window process. As PJM works through this quality assessment and continues to develop the RTEP analysis, it is possible that identified potential violations will be removed from the potential violation list as determined by PJM Planning. It is also possible that as the analysis continues, other potential violations that were not on the potential violation list originally are added to that list as deemed necessary by PJM Planning.

This process is intended to develop upgrades to address system reliability criteria violations and market efficiency projects. PJM will regularly retool analysis based on updated system information to ensure that solutions address the identified violations, do not cause any new violations, and are still needed to address reliability criteria and/or market efficiency projects.

PJM maintains the right to select the most appropriate project to address the violation/constraint/issue.

V. Scope of Work
Through this Proposal window PJM is seeking solutions to identified Reliability Criteria violations.

As noted at previous TEAC meetings and in the results of the analysis for this window, PJM identified several potential issues on facilities where the loading on the facility includes a contribution from a generator that has notified PJM of their expectation to retire, but either has not yet retired or has not been retired for greater than 1 year. PJM rules require retired generators to be included in the models and simulations for 1 year after their retirement to preserve their capacity rights. Assuming generation retires as anticipated, the loading on these facilities may remain within applicable rating, and these are not likely to be criteria overloads at that time. Additionally, PJM identified several potential issues on facilities where the loading on the facility includes a contribution from a FSA generator which is currently process in PJM's Generation Interconnection queue. FSA generation does not always proceed to the ISA phase and eventual commercial operation. Furthermore, PJM has implemented the lower voltage cutoff, as approved by FERC, by which PJM will not be including violations at levels 200 kV or below (except those that share common contingencies/geography, as determined by PJM). Due to these factors, PJM does not intend to recommend upgrades to solve these issues at this time.

Objectives

Develop solutions to identified potential violations;
1. If solutions cause any additional violations, such as, thermal, voltage, short circuit or stability violations, they must also be addressed within the proposal package; and
2. Adhere to all applicable criteria, including all PJM, NERC, SERC, RFC, Local Transmission Owner Criteria and all minimum design requirements as defined by the Designated Entity Design Standards Minimum Required Standards document. The DEDSTF Minimum Required
Standards can be found at the following link: http://www.pjm.com/planning/design-engineering.aspx

What PJM Provides:
The following data and related information is required for this analysis and is expected to be available from PJM:

Modeling Data:
The following data is provided. Note these files are Critical Energy Infrastructure Information (CEII) and should be handled accordingly.

1. **Base Power Flow Case(s).**
 a. This window addresses a variety of reliability criterion that spans several corresponding power flow cases. The data in the digital spreadsheet notes which case(s) correspond to each identified reliability criteria violation.

2. **Contingency List(s).** All Contingency Types (Single, Bus, Tower, Line w/ stuck breaker).

3. **Subsystem File(s).** Identifying all subsystem zones to be considered in analysis.

4. **Monitor File(s).** Identifying specific ranges of facilities by area and kV level to be considered in analysis.

5. **Applicable Ratings:** If different from those used in the case

6. **Detailed Power Flow Results** plus any additional technical comments.

7. **Short Circuit base case.** This case will reflect the 2022 RTEP base case.

8. **Breaker Change Files.** All breakers in specific TO area that have been identified as overdutied will be provided.

9. **TO Criteria Setting Files.** TO files will be provided that explain the settings used for short circuit analysis for each specific TO.

Response back to PJM (Deliverables)
The following must be provided no later than the close of the window. Please use the PJM provided templates to describe the high level details of your proposal. Proposing entities must provide separate proposals for each variation of the solution. PJM will not accept proposals with multiple options. Each proposal with a unique set of electrical characteristics and/or routing characteristics must be submitted as a separate proposal. If the proposer wishes to include more detail, additional description may be included in the Proposal narrative (in docx or pdf format) added to address specifics of your proposal including, but not limited to:

1) Description of the proposed solution and corresponding violation(s) it resolves.
 a) Describe to PJM if the project should be considered only as a whole or if portions of the project should be considered as well.

2) Detailed analysis report on proposed solutions, including:
 a) Breaker one-line diagrams to illustrate system topology
 b) Output of analysis showing solution to identified issue,
 c) High level schedule including time to construct and the expected in-service date
 d) High level cost estimate including:
 i) List of costs for each major component, e.g., substation work, transformer cost, transmission line work, and
ii) List of assumptions, e.g., base cost, risk and contingency (R&C) costs, and total cost
e) Availability of rights of way
3) Incumbent vs. Non-incumbent scope of work
a) If a non-incumbent proposal assumes that a portion of the work will be completed by an
 incumbent Transmission Owner, the high level scope and itemized cost for that work
 shall be provided.
4) Equipment parameters and assumptions
 a) All parameters, e.g., equipment ratings, impedances, line lengths, etc.
 b) For reactive devices, settings and outputs
 c) For synchronous machines, MW and MVAR output assumptions
5) Complete set of power flow cases containing proposed solutions (all cases should be
 solvable, not containing any non-convergence issues, in line with industry standards). You
 must provide a PSS/E version 33 IDEV file so that the modeling of the proposal may be easily
 applied to other models (please only use unused bus numbers for the creation of new
 busses). Please contact PJM with any questions. Provide any other necessary data
 including critical contingency files to reproduce the proposed solutions (Contingency Files
 must be provided in one Word document for each contingency type (Single, Bus, Tower,
 Line Fault Stuck Breaker) with the following sections 1) Modified Contingencies 2) New
 Contingencies 3) deleted Contingencies). All cases and data files must be in PSS/E ver. 33
 format.
6) Any other supporting documentation required by PJM that is required to perform
 verification review, that isn’t explicitly stated in this document.
7) Submission of Deliverables
 a) Preferred – VIA Axway Secure File Transfer portal https://sftp.pjm.com/ (Please submit
 all files for a single proposal as 1 zipped file folder)
 b) Alternate - VIA electronic mail to ProposalWindow-Admin@pjm.com
 c) Alternate (e.g.: DVD or flash/thumb drive) - VIA FedEx to Nancy Muhl, PJM
 Interconnection, 2750 Monroe Boulevard, Audubon, PA 19403

PJM requires all proposal solutions, both Transmission Owner Upgrades to existing facilities and
Greenfield projects, to complete the RTEP Proposal Window Template, included within the
downloadable package of files. An example of how to fill out the template can be found at:

http://www.pjm.com/~media/planning/rtep-dev/expan-plan-process/ferc-order-1000/rtep-
proposal-windows/rtep-proposal-window-template.ashx

If the proposal is a Greenfield solution then, the ‘Greenfield Project Proposal Template’
included within the downloadable package of files must also be included in the project proposal
package. The Greenfield template can also be found at:

http://www.pjm.com/~media/planning/rtep-dev/expan-plan-process/ferc-order-1000/order-
1000-greenfield-project-proposal-template.ashx

Proposing entities are required to provide a public and non-public version of the project
proposal. Proposing entities should expect that PJM will post the public version of the
proposals after the close of the window. The public version must include redactions for any CEII
information and information which the proposing entity deems is business proprietary and confidential. PJM reserves the right to review the proposing entity’s proposed redactions to ensure the appropriate level of transparency while protecting confidential and proprietary information and CEII. Redaction guidelines can be found at:

Proposal Fees

All proposals, upgrade and greenfield, submitted to 2017 RTEP Proposal Window 1 are subject to the Proposal Fee based on the following fee structure:

- No fee ($0) for any proposed projects (upgrade and greenfield) below $20M
- $5,000 fee for any proposed projects (upgrade and greenfield) greater than $20M and less than $100M
- $30,000 fee for any proposed projects (upgrade and greenfield) greater than $100M

The fee is based on the total cost estimate provided by the proposing entity in the detailed proposal (must be submitted along with final proposal submissions), by the close of the window. Total cost estimate shall include all scope elements required in proposal, including the cost estimate of upgrade work to be completed by other entities and cost estimate of work required to alleviate any new violations caused by the proposal.

Timeline

7/11/2017, Opening of 2017 RTEP Proposal Window 1

8/25/2017, Close of 2017 RTEP Proposal Window 1 (all items due)

Items due by this date:

- RTEP Proposal Template (xlsx spreadsheet) with cost estimate including both an overall project cost and detailed cost of each component
 - This is a detailed cost estimate and should include any relevant information that PJM could need to make a project selection.
 - Any cost cap or cost containment mechanisms should include enough detail for PJM to understand the implementation and impact of the cost mechanism under theoretical scenarios.
 - Describe in detail every aspect of the proposed cost where the cost mechanism does and alternatively does not apply
 - If supplemental theoretical examples of how the cost mechanism would behave under varying scenarios would benefit PJM’s understanding of the cost mechanism, include them with the project documentation.
- All analytical files needed for technical analysis & simulation
 - Include all results of proposer’s simulations
 - E.g. all PSS/E files, contingency files, one line diagrams, etc.
- Detailed substation (showing all breaker and transmission topology) and route diagrams
- Pre-qualification documentation
- Greenfield RTEP Proposal narrative (docx/pdf Report, Redacted and Un-redacted)

Notes:
- PJM will not make any proposal details public until all items are submitted.

<table>
<thead>
<tr>
<th>Action</th>
<th>Target Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>PJM distributes Problem Statement to RTEP proposal window participants</td>
<td>7/11/2017</td>
</tr>
<tr>
<td>Recipients submit questions to PJM</td>
<td>7/11/2017 – 8/25/2017</td>
</tr>
<tr>
<td>PJM distributes answers to questions to all recipients</td>
<td>7/11/2017 – 8/25/2017</td>
</tr>
<tr>
<td>Recipients submit proposal template to PJM†</td>
<td>By 8/25/2017</td>
</tr>
<tr>
<td>Recipients submit detailed greenfield proposals and final cost to PJM†</td>
<td>By 8/25/2017</td>
</tr>
</tbody>
</table>

Proposals received after close of the proposal window will not be accepted.
Document Revision History

7/11/2017 – V1 - Original File Posted