

Regulation Strawman Design Discussion

RMDSTF October 19, 2022

Regulation Signals 1. Signal Design

Signal De

Regulation Signals & Products

Regulation Signals:

- Proposal 1: Single signal that all resources will follow
- Proposal 2: Keep RegA/RegD signals status quo

Product Type:

Proposal: Regulation Up and Regulation Down Products

- Proposal 1: A single signal regulation design will allow PJM to better reflect the system needs to the regulation fleet to provide regulation service to PJM.
 - Resource agnostic signal aligned with system needs
 - Allows a simpler implementation for dispatch to operate and track, today's Reg A/D construct is not always clear on what regulation is available.
 - Allows for additional market products to be developed (regulation up/down). Removing the 2 signal complexity would allow for an easier transition to up and down signals

Regulation Signals & Products

<u>Preliminary</u> mockup of an open loop controller for a hypothetical single signal:

Control Output for 09-20-2022 HE00-04 at 525 MW Available Regulation

Regulation Signals & Products

<u>Preliminary</u> mockup of an open loop controller for a hypothetical single signal:

Control Output for 09-20-2022 HE00-04 at 800 MW Available Regulation

Regulation Signals & Products

- Implement a Regulation Up and Regulation Down Products
 - 2 separate markets with separate requirements and clearing prices
 - Resources would be able to offer, clear and provide both products together, or can provide just 1 product within the hour
- Regulation up/down products will allow PJM to better address system needs in the future
 - PJM would have the ability to procure more or less of 1 product, depending on changing system needs
 - Reg Up/Down markets would allow the broadest set of resources to provide regulation service
 - Market efficiency on available resource capabilities, and minimized LOC

 Operationally, one product will be fully deployed and undeployed before the other product is asked to respond to an AGC signal

Regulation Signals & Products

Regulation Requirement

Regulation Requirement 3. <u>Requirement Design</u>

Regulation Requirement Design:

- PJM is proposing to move away from the existing On/Off Ramp construct.
- Proposal 1: Dynamic Hourly Requirement
- Proposal 2: Base Requirement with Adders

- Proposal 1: Dynamic Hourly Requirement
- A formulaic hourly requirement designed to reflect the volatility seen on the system in real-time.
 - Expected load uncertainties, expected wind/solar uncertainties, expected interchange uncertainties in the near-term could all be considered as possible inputs.
 - Upper and lower bounds could be implemented to provide certainty.
 - Better aligns the regulation requirement with operational reality in real time.
 - Produces a requirement that is resilient to future system changes.

- Proposal 2: Base Requirement with Adders
- An hourly requirement that establishes a base MW level and raises or lowers the requirement based on system conditions.
 - Base requirement MW would be X MW
 - Adders suggested include % increases for periods of low CPS, of high intermittent resource commitment, of system emergencies.
 - Adders can reflect conditions in which Operators would manually adjust the requirement, providing formal guidelines and automation.
 - Better aligns the regulation requirement with operational reality in real time.

Benefits Factor

actor ധ ctiv ffec Margii Ш Ш 0

Benefits Factor/ Rate of Technical Substitution

- Proposal:
 - Remove the BF/MRTS from the regulation market design

Effective MW Calculation

- Proposal:
 - Keep an effective MW construct: Offer MW * PerfScore

Benefits Factor

- Looking at removing the benefits factor/ MRTS regardless of what signals are in operations (proposal 1: one signal design or proposal 2: status quo A/D signals)
- Consideration for removing the BF/MRTS even with 2 signals in operations
 - Remove complexity that is an approximation and not always reflected of real-time system benefits.
 - Benefits changes with different A/D mixes are minimal and PJM signal will be proportioned differently depending on mix but still the same total regulation request.
 - Additional analysis being performed on a 100% regD fleet.

S N

12. Schedule used for LOCUse of desired MW (LMP Ramp Limited)

3

Regulation LOC

 Proposal : RegLOC calculation to use the energy schedule the unit is running on to provide regulation rather than

RegLOC Schedule = Least

available price_based energy schedule, greatest (available cost_based energy schedule)

 RegLOC desired MW to use shadow calculation of Desired MW @ Ramp rate limit rather than Desired MW @ LMP

Offer Structure

Components of Offer

• Proposal: Performance and Capability (Status Quo)

Inclusion of VOM in reg. offers

 Remove VOM regulation performance cost offer, continue to allow VOM for regulation-only resources

Dual Offer Capability/process

 Resources only offer 1 signal in an hour. Resources are allowed to be dual qualified (as applicable).

offer ance fer Struct $\overline{\mathbb{O}}$

Adjusted Capability & Performance Offer Definition

- Proposal: Simplify clearing price calculation by removing performance, mileage, and BF components
- Continue to procure resources based on performance and pick up higher performing/lower cost resources first

Offer Structure

• Existing calculation:

$$Adjusted Performance Cost (\$) = \frac{\begin{pmatrix} Performance \\ Offer (\$/\Delta MW) \end{pmatrix}}{\begin{pmatrix} Signal Type (\Delta MW/MW) \\ Of \\ Of \\ Of \\ Of \\ Of \\ Offered Resource \\ Score \end{pmatrix}} \begin{pmatrix} Mileage \\ Offered Resource \\ Score \\ \end{pmatrix}} * \begin{pmatrix} Capability \\ (MW) \end{pmatrix}$$

Proposal: Just use offers to set price

Markets & Commitments

Offer Structure 25

Clearing Timing & Commitment process

- Proposal: Implementing a DA market for regulation and continue to balance in real-time
- DA and RT Market for regulation capability
 - Allow alignment of regulation reserves between DA and RT
 - Will allow for more efficient procurement in RT, ability to commit regulation in SCED
- Performance or mileage will only be paid to resources who provide the service in real-time

Performance Scoring and Testing

Qualification Test

 Proposal: 1 self test +1 PJM test or 2 PJM tests for new resources.

Components of Performance Scoring

Proposal: Precision only calculation

Minimum Allowable Thresholds

• Proposal: Participation: 50%, Payment: 25%

Historic Performance Score

• Proposal: Continue to capture historic score, evaluate alternative solutions to 100 hour rolling average

Regulation Testing Proposal

Disqualified Resources Change in Capability (MW) Change in Communication Path or EMS – Existing or New Owner/MOC

New Resources

1 PJM-administered test

2 tests = 1 selfscheduled test + 1 PJM-administered test or 2 PJMadministered tests

New Performance Score of (an average of) PJM-administered test(s)

Application of substitution factor

- Proposal: Settlement does not include the benefits factor and replace mileage ratio with mileage
- Capability \$ = MW*PS*capability clearing price

Performance \$ = MW*PS*Mileage* performance clearing price

Settlement Components

- Proposal: 5-minute pricing (status quo)
- Two part settlement for DA and RT, balancing

<u>Mileage</u>

- Proposal 1: All movement regardless of direction (status quo)
- Proposal 2: Movement in control of ACE