Market Efficiency Process

Nicolae Dumitriu
Sr. Lead Engineer, Market Simulation

Market Efficiency Process Enhancement
Task Force – Education Session
February xx, 2018
Overview

• Section 1: Market Efficiency Window Process

• Section 2: Critical Modeling Inputs

• Section 3: Project Selection Process
Section 1: Market Efficiency Window Process
Market Efficiency Goals and Model

• Goals
 – Asses future energy and capacity market congestion
 – Solicit and approve projects to relieve congestion
 – Strategic multi driver project development
 • Address both reliability and congestion
 – Accelerate beneficial reliability projects

• PJM Model
 – Sponsorship model
Inception of ME in RTEP

RTEP Drivers:
- Reliability
- Market Efficiency
- Operational Performance
- Public Policy

Order 1000

Reforms:
- Cost Allocation
- Non incumbent Development

1st Window

Impacts:
- Formal
- Competitive
- Long term

2nd Window

Impacts:
- Fees
• 12 Month Cycle
 – Acceleration

• 24 Month Cycle
 – Input assumptions
 – Base case development
 – Develop target congestion
 – Proposal submission
 – Evaluation
 – Approval
Market Efficiency Statistics

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Proposed Projects</th>
<th>Analyzed Projects</th>
<th>Approved Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior to 14/15</td>
<td>25 projects (2010, 2011)</td>
<td>25+ projects (with combinations)</td>
<td>2010, 2011 – 1 project approved</td>
</tr>
<tr>
<td></td>
<td>17 projects (2013)</td>
<td>17 projects (2013)</td>
<td></td>
</tr>
<tr>
<td>2014/15 Window</td>
<td>93 projects</td>
<td>110+ projects (with combinations)</td>
<td>2012 - No project approved</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2400+ PROMOD runs, 50,000+ runtime hrs.</td>
<td></td>
</tr>
<tr>
<td>2016/17 Window</td>
<td>96 projects</td>
<td>120+ projects (with combinations and reevaluations)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3500+ PROMOD Runs, 90,000+ runtime hrs.</td>
<td></td>
</tr>
</tbody>
</table>

In-progress
Market Efficiency Work Flow

- PROMOD NERC Data Annual Release
- Assumptions Analysis
- PJM Load Forecast Update
- PJM Generation Queue Update
- RTEP Power Flow Update
- Bus to Load Zone mapping
- Flowgate model
- Reactive limits (PV Analysis)
- External Model Updates (MISO and others): load, gen, flowgates
- ME Base Case
- Re tooling
- Analysis
- Approval and Communication

External Model Updates (MISO and others): load, gen, flowgates

Re tooling

Analysis

Approval and Communication

www.pjm.com

PJM©2018
Section 2: Critical Modeling Inputs
Market Efficiency Analytical Software

Inputs
- Generation data
- Demand & energy
- Fuel forecasts
- Environmental costs
- Power flow case
- Monitored flowgates
- Other information: reserve requirement, market territory, etc.

Outputs
- Hourly LMP of buses and hubs, include energy, loss and congestion components
- Hourly unit generation and production cost
- Hourly binding constraints and shadow prices
- Hourly line flows
- Hourly company purchase/sale
- Environmental emissions
- Fuel consumption
Market Efficiency Inputs – Overview Base Case Inputs

PROMOD SCED Simulation

- **Generation Expansion Plan (ISA/FSA)**
- **Intermittent resource hourly shapes**
- **Fuel Price Forecast:** Natural Gas, Coal, Oil-H, Oil-L
- **Emissions Price Forecast:** CO2 (National, RGGI), SO2, Nox (seasonal,annual)
- **Demand Forecast:** Annual Peak Load and Energy, Hourly shapes
- **Demand Response Forecast**
- **Transmission Topology (As-Is, RTEP)**
- **Topology Mapping:** Bus-Area, BusLoad-Demand, Gen-Bus (As-Is, RTEP)
- **Reactive Interface PV Analysis**
- **Monitored lines and contingencies, interfaces and nomograms, PARs**

Interregional Inputs

- **MISO and NY Updates:** GenExp, load forecast, wind profiles, major upgrades, flowgates, transactions with SPP/MRO, imports Canada
- **Pool Interaction Modeling:** M2M flowgates, pseudo-ties, DC schedules, hurdle rates, import/export limits, inactive pools

Reporting Inputs

- **RTO Weighted Average Cost of Capital**
- **RTO Fixed Carrying Charge Rate**
- **ARR Source Sink Paths and Cleared MW**
- **Project Cost and ISD**
Section 3: Project Selection Process
Market Efficiency Project Selection Flowchart

Start → Review proposals → Perform B/C → Does project pass B/C?

- Yes → Does project reduce or fix congestion driver?
 - Yes → Project Not Recommended
 - No → Does project cause additional unacceptable congestion?
 - Yes → Project Not Recommended
 - No → Sensitivity Analysis Other Factors considered*

- No → Does project require additional upgrades?
 - Yes → Does Reliability and Constructability Analysis (if necessary) require additional changes?
 - Yes → Project Not Recommended
 - No → Project Recommended
 - No → Is the project competitive?
 - Yes → Project Recommended
 - No → Project Not Recommended

Finish
Market Efficiency Process – Congestion Drivers

- PROMOD simulations are used for determining future congestion drivers
- PJM solicits projects for posted congestion drivers
Market Efficiency Process – Proposal Analysis

• Each valid proposal is tested for Benefits/Cost > 1.25
 – Total Benefits = Energy Benefits + RPM Benefits
 (for more details, see *PJM Market Efficiency Benefits Calculation* education session)

• Candidates passing B/C tests:
 – Congestion driver reductions
 – Other factors: overall PJM congestion changes, PJM Load Payments, PJM Production Costs
 – Perform Sensitivities
 • Gas Sensitivity
 • Load Sensitivity
 • Other sensitivities as needed (Examples: gen exp, renewable penetration, carbon tax, imports/exports, etc.)
Market Efficiency Process – Other Analyses

• Reliability Analysis
 – Additional reliability upgrades

• Independent Cost Analysis
 – Projects exceeding $50M Independent cost analysis

• Constructability Analysis
 – Verification of proposed schedule duration
 – Other risks to both cost and schedule

• Project Combinations
 – Combination of components of multiple projects
 – Incremental or multiple projects
Market Efficiency Process – Approval & Communication

- Selected projects require PJM board approval
- Approved projects are communicated at TEAC meetings
- Letter from PJM notifying construction responsibility
Appendix A – Market Efficiency Inputs Modeling
Market Efficiency Inputs – PJM Generation Modeling

• Forecasted generation includes:
 – In-service generation
 – Active queue generation with Interconnection Service (ISA) and Facility Service (FSA) agreements
 – Expected future deactivations

• Modeled inputs:
 – Operational: summer/winter capacity, heat rate, min runtime/downtime, must run status, emission rates
 – Cost: startup cost, variable O&M, curtailment price
Market Efficiency Inputs – PJM Load Forecast

- **PJM Load Forecast Report**
 - Peak Load and Annual Energy adjusted by Energy Efficiency cleared in RPM Auction
 - Load forecast mapped to PROMOD Areas

- **ABB synthetic demand shapes**
 - Based on the average of several years of load shapes
 - Hourly load shapes merged to match PJM load zones

- **Demand Response**
 - Modeled as discrete units
 - Amount based on the level cleared in the RPM BRA auction
Demand Response Modeling

• Level of Demand Response (DR) is based on the level cleared in the RPM BRA auction by delivery year, zone and product type.

• Demand Response is modeled as discrete units.

• Locations (zip codes) of Demand Response are based on registration data submitted through PJM DR Hub system.

• MW by Product Type are mapped to nearest BES facility.

• Strike price is modeled to ensure that DR is called at a level consistent with history and contractual requirements for the product type.
Market Efficiency Inputs – PJM Fuel Forecast

- Forecast prices developed by the ABB fuels group
 - Gas and Oil Price Forecasts
 - Prices derived from NYMEX (short term) and the EIA Annual Energy Forecast (long term)
 - ABB’s Coal Forecast model
 - Mining costs, emission price forecasts, transportation routes and pricing, coal quality

- Additional input from IHS Energy
 - Alternative view on Gas Price forecast
 - Used to create high/low gas sensitivity scenarios
Market Efficiency Inputs - Emissions Forecast

- Emissions prices developed by ABB
 - Three major effluents modeled: SO2, NOx, and CO2
 - Effluents (by trading program) assigned to generators based on location and release rates
 - Sources:
 - EPA CEMS data
 - ABB’s proprietary Emission Forecast Model (EFM)

- PJM checks
 - Consistency with expected emissions legislation affecting PJM Generators
 - Mapping of generating units to emissions price
 - Validate installation of emissions reduction equipment and removal rates for generating units (if necessary)
Market Efficiency Inputs - Transmission Topology

• Same topology used for all study years
 – To evaluate a project expected to be in service in 2019, the same topology is used in the pre-2019 study years simulated in PROMOD IV.
 – The generation (i.e. in-service or retired), fuel and emissions pricings will change by study year, but the topology is held constant.

• RTEP system topology
 – All approved baseline upgrades
 – All FSA network and direct interconnection upgrades

• External world topology
 – Derived from Eastern Interconnection Reliability Assessment Group (ERAG) Multi-Regional Modeling Working Group (MMWG) Series
Market Efficiency Inputs - Flowgates

• Thermal Flowgates
 – Historical market constraints
 – NERC Book of Flow-gates
 – Removed constraints with very low likelihood of binding in any future year simulation
 – Added constraints with increasing likelihood of binding

• Transmission Ratings Modeling
 – Summer 95 degree day-time rating for Normal and Long-term Emergency
 – Winter 32 degree day-time rating for Normal and Long-term Emergency

• Reactive Limits
 – PV Analysis to develop summer and winter MW transfer limits for commercially significant interfaces in PJM
 – Modeled interfaces: AEP-DOM, AP South, BCPEP, Black Oak Bedington, 5004/5005, Central Interface, Cleveland, COMED, Eastern Interface, Western Interface
Appendix B – Operating Agreement & Manual References
References

• Scope, PJM requirements & Member requirements
 • http://www.pjm.com/about-pjm/member-services.aspx

• PJM Manual 14B, Section 2.6:
 http://www.pjm.com/~/media/documents/manuals/m14b.ashx

• PJM Operating Agreement, Schedule 6, Section 1.5.7:

• PJM Market Efficiency Practices
 • http://www.pjm.com/~/media/planning/rtep-dev/market-efficiency/pjm-market-efficiency-modeling-practices.ashx