

Distributed Solar and Battery Generation Update

Load Analysis Subcommittee December 6, 2021

Molly Mooney Sr. Analyst Resource Adequacy Planning

www.pjm.com | Public PJM © 2021

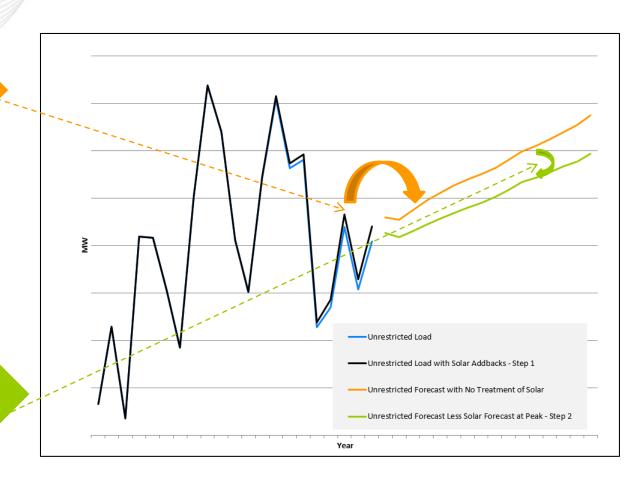
Two-Step Approach for Distributed Solar in Long Term Load Forecast

Step 1 (gather data/update historical loads): To account for the historical impacts of distributed solar generation, UL back-casts hourly values by zone. These estimates are then added to the unrestricted load used in PJM load models.

GATS

Generator Attribute
Tracking System

UL Solar Back-Cast


<u>Step 2 (adjust forecast)</u>: For forecasted values of distributed solar capacity, PJM contracts with IHS Markit to develop a distributed solar generation forecast specific to the PJM region. PJM then uses the state-level forecast to derive a zonal capacity at peak. Those values are then subtracted from the forecast created with solar addbacks.

IHS Markit

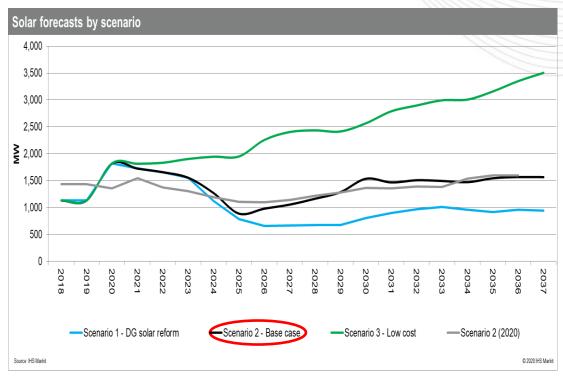
state level solar forecast additions

PJM

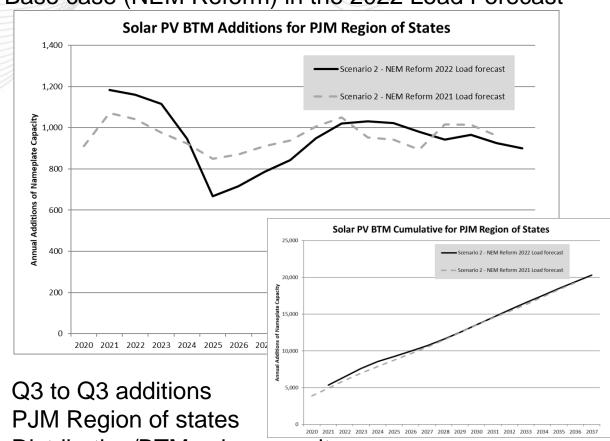
converts to zonal solar peak impact

Historical GATS Installations

Historical Nameplate Capacity of Distributed Solar Generation (MW - AC)


	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
AE						0.1	0.4	1.6	4.3	5.6	11.8	24.7	45.1	96.7	129.3	154.4	186.3	220.3	287.5	335.8	403.8	455.3	510.0	544.5
AEP					0.0	0.0	0.0	0.0	0.0	0.1	0.3	0.5	13.5	17.3	23.1	29.1	35.6	39.3	44.7	45.8	67.8	74.9	82.2	141.8
APS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	1.0	5.1	11.4	16.5	20.6	30.3	55.6	97.6	128.0	128.0	138.6	150.2	178.9
AT SI					0.0	0.0	0.0	0.1	0.1	0.1	0.2	0.5	5.3	19.1	36.5	44.3	47.9	53.2	59.6	89.2	93.8	101.4	112.0	118.3
BGE							0.0	0.0	0.0	0.1	1.6	3.5	8.9	23.0	40.0	53.8	78.7	162.1	259.2	296.3	325.7	377.8	429.1	466.9
COMED			0.0	0.0	0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.3	0.9	1.3	24.0	25.0	25.9	28.3	33.2	43.8	50.4	101.3	263.3	458.8
DAYTON										0.0	0.0	0.1	0.5	2.2	8.9	11.1	12.6	17.0	17.5	17.5	23.9	39.1	39.1	39.1
DPL		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.8	2.2	4.8	8.0	33.4	61.7	83.3	98.3	128.7	159.6	182.6	213.5	239.8	273.9	280.9
DQE							0.0	0.0	0.0	0.0	0.0	0.0	0.6	1.1	3.6	4.1	4.3	4.8	6.6	16.1	19.3	21.0	22.8	27.6
DUKE		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.3	0.6	1.7	6.1	11.4	11.9	13.3	15.3	15.8	15.9	24.4	24.9	24.1	24.2
EKPC										0.0	0.0	0.0	0.1	0.1	0.1	0.2	0.3	0.5	0.6	11.1	11.0	11.0	11.0	10.9
JCPL			0.0	0.0	0.1	0.9	1.8	5.4	11.4	15.4	24.1	37.2	66.4	161.9	236.2	298.7	355.3	408.3	486.3	519.1	594.7	695.9	772.4	811.2
METED			0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.2	1.5	13.2	32.7	35.2	35.9	36.9	38.4	42.8	51.2	54.6	65.2	74.2	92.0
PECO	0.0	0.0	0.0	0.0	0.1	0.2	0.3	0.3	0.5	0.6	0.9	3.5	15.5	33.5	44.0	48.7	49.5	51.3	64.7	77.2	83.6	92.2	108.3	119.7
PENLC			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	1.3	4.0	4.5	5.0	5.5	5.7	6.8	7.1	7.6	8.8	11.0	14.3
PEPCO						0.0	0.0	0.0	0.1	0.2	0.5	3.4	6.5	13.6	27.9	41.2	60.6	116.3	209.4	260.6	303.5	346.2	434.5	479.3
PL								0.0	0.0	0.1	0.2	2.5	29.0	67.3	77.1	80.2	82.4	93.7	107.5	120.1	134.5	147.7	170.7	194.9
PS			0.0	0.3	0.5	0.6	1.1	4.7	14.4	21.4	32.4	65.4	115.7	264.0	414.8	507.7	547.5	598.2	692.8	756.6	895.6	989.7	1,119.1	1,245.2
RECO			0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.9	1.0	1.6	2.1	5.0	11.0	12.2	12.5	12.9	13.8	14.8	16.1	18.4	26.5	29.2
UGI											0.0	0.1	0.2	0.4	0.4	0.4	0.5	0.4	0.5	0.5	0.4	0.5	0.5	0.5
VEPCO		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.6	2.9	4.5	11.3	25.5	109.7	269.1	543.1	566.5	708.7	805.3	992.3	1,102.1
PJM RTO	0.0	0.1	0.1	0.5	0.9	2.1	3.9	12.7	31.7	45.8	76.4	152.1	342.5	798.3	1217.7	1493.4	1793.8	2319.3	3149.5	3555.6	4161.0	4755.0	5627.1	6380.2

Note: All years except for 2021 are based on calendar year, 2021 is through 8/31/2021



IHS Forecast Scenarios

IHS produces three scenarios; PJM will use Scenario 2 – Base case (NEM Reform) in the 2022 Load Forecast

- Calendar year additions
- Entire PJM States
- Distribution/BTM solar capacity additions

Distribution/BTM solar capacity additions with degradation

Distributed Solar Generation Forecast by **State**IHS Scenario 2 – NEM Reform PJM Region Only Annual Additions of Nameplate Capacity

	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037
DC	28.5	30.2	30.7	24.4	13.2	9.3	9.6	10.6	11.9	9.2	6.7	5.6	2.6	6.8	5.3	5.3
DE	24.5	12.9	14.8	11.1	11.8	12.7	12.7	16.8	47.3	85.1	91.9	89.6	78.1	60.3	58.0	57.7
IL	241.9	223.8	201.0	151.1	121.4	133.8	144.4	143.3	157.9	157.7	154.5	120.8	124.5	141.5	128.9	130.5
IN	5.2	6.5	5.0	4.2	3.8	4.1	7.0	8.0	7.8	5.6	5.8	5.8	5.8	7.0	7.1	7.2
KY	2.3	2.1	2.0	1.4	2.8	4.0	5.9	6.8	6.9	6.0	7.1	7.1	7.0	7.0	7.0	6.9
MD	139.8	150.7	124.6	78.9	69.2	101.3	146.1	204.6	210.1	278.1	298.8	296.5	295.0	293.5	219.4	214.5
MI	1.3	1.3	1.2	1.0	0.7	0.8	1.4	1.9	2.2	2.0	2.1	4.1	4.3	5.4	5.7	5.9
NC	9.8	6.9	5.1	3.0	1.4	1.3	1.8	2.3	3.2	4.2	6.0	6.1	6.0	6.0	8.2	8.7
NJ	232.6	263.3	252.8	217.6	178.7	153.1	132.0	117.8	152.5	165.7	174.1	171.2	144.7	167.7	218.3	217.2
OH	165.8	159.9	111.3	44.7	41.8	37.8	35.9	40.9	43.7	35.0	39.0	51.6	56.8	60.9	62.0	58.5
PA	92.2	92.8	80.9	61.4	55.8	58.5	63.0	71.8	78.7	75.6	96.8	123.2	123.3	119.4	101.7	84.9
TN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
VA	203.7	152.7	104.6	57.9	130.5	153.6	154.8	186.4	160.2	123.5	100.0	74.9	69.6	59.5	64.6	64.2
WV	11.7	12.1	11.8	11.7	84.8	116.4	127.8	137.3	138.8	82.6	40.4	24.5	25.3	30.2	39.3	39.2
Total	1,159.3	1,115.1	945.8	668.4	715.9	786.8	842.2	948.4	1,021.2	1,030.3	1,023.2	981.0	943.0	965.2	925.6	900.9

Comparison of Forecasts

Distributed Solar Generation Forecast of Additions by State Comparison of 2021 and 2022 Forecast

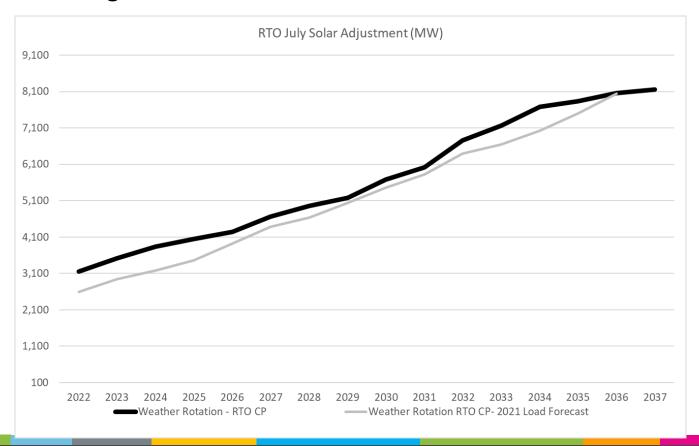
	2022 F	orecast (Scer	nario 2 NEM I	Reform)	2021 F	orecast (Sce	nario 2 NEM I	Reform)	Percent Change					
	2022	2023	2024	2025	2022	2023	2024	2025	2022	2023	2024	2025		
DC	28.5	30.2	30.7	24.4	24.3	21.8	19.3	27.6	17%	38%	59%	-12%		
DE	24.5	12.9	14.8	11.1	22.2	19.2	17.9	17.7	10%	-33%	-18%	-37%		
IL	241.9	223.8	201.0	151.1	139.2	140.8	140.2	102.5	74%	59%	43%	47%		
IN	5.2	6.5	5.0	4.2	3.9	3.9	2.7	3.7	32%	65%	89%	13%		
KY	2.3	2.1	2.0	1.4	4.1	3.8	3.4	1.4	-45%	-46%	-43%	1%		
MD	139.8	150.7	124.6	78.9	210.7	212.6	216.7	254.1	-34%	-29%	-43%	-69%		
MI	1.3	1.3	1.2	1.0	0.7	0.6	0.6	0.6	83%	107%	95%	58%		
NC	9.8	6.9	5.1	3.0	6.9	5.1	3.4	1.6	42%	35%	48%	85%		
NJ	232.6	263.3	252.8	217.6	273.9	233.0	211.3	191.5	-15%	13%	20%	14%		
ОН	165.8	159.9	111.3	44.7	81.9	71.8	59.3	29.9	102%	123%	88%	49%		
PA	92.2	92.8	80.9	61.4	85.2	72.1	61.8	35.2	8%	29%	31%	74%		
TN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
VA	203.7	152.7	104.6	57.9	186.9	190.0	184.9	179.5	9%	-20%	-43%	-68%		
WV	11.7	12.1	11.8	11.7	2.8	1.9	2.0	3.6	319%	527%	480%	224%		
Total	1,159.3	1,115.1	945.8	668.4	1,042.7	976.7	923.7	849.1	11%	14%	2%	-21%		

Distributed Solar Generation Forecast by Zone Cumulative Additions of Nameplate Capacity

	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037
AE	29.4	62.6	94.3	121.5	143.9	163.0	179.4	194.1	213.0	233.5	255.1	276.2	294.0	314.7	341.5	368.1
AEP	105.1	201.3	270.6	307.3	391.6	495.1	607.8	733.7	857.4	940.7	1,000.7	1,055.0	1,110.8	1,171.5	1,238.3	1,304.0
APS	41.4	82.6	117.4	142.5	203.7	285.2	378.0	484.5	592.6	679.7	751.1	817.4	883.7	951.4	1,012.5	1,070.7
ATSI	67.5	132.7	178.5	197.7	215.6	232.0	247.8	265.8	285.0	300.7	318.6	342.1	367.5	394.3	420.9	445.7
BGE	69.3	144.4	206.6	246.1	280.9	332.1	406.1	510.1	617.2	759.5	912.8	1,065.5	1,218.0	1,370.1	1,484.2	1,596.1
COMED	241.9	465.7	666.7	817.8	939.3	1,073.1	1,217.5	1,360.8	1,518.7	1,676.4	1,830.9	1,951.7	2,076.2	2,217.7	2,346.6	2,477.1
DAYTON	17.9	35.1	47.1	51.9	56.4	60.5	64.4	68.8	73.5	77.3	81.5	87.1	93.2	99.9	106.6	113.0
DPL	37.8	64.6	90.8	109.2	127.7	150.1	176.6	212.7	279.7	390.5	509.9	626.9	732.2	819.7	898.2	976.0
DQE	8.2	16.6	23.9	29.4	34.5	39.8	45.5	52.0	59.1	66.0	74.7	85.8	96.8	107.5	116.6	124.2
DUKE	24.1	47.5	64.0	70.8	77.5	83.8	90.4	97.8	105.7	112.2	119.5	128.7	138.6	149.2	160.0	170.3
EKPC	1.2	2.4	3.4	4.2	5.7	7.9	11.1	14.8	18.5	21.8	25.6	29.5	33.3	37.1	41.0	44.7
JCPL	67.3	143.7	217.1	280.3	332.4	377.0	415.5	450.0	494.7	543.3	594.4	644.8	687.4	736.9	801.3	865.6
METED	9.5	19.1	27.5	33.8	39.6	45.7	52.2	59.7	68.0	75.9	86.0	99.0	112.0	124.6	135.4	144.4
PECO	23.6	47.4	68.1	83.8	98.0	112.9	128.8	147.0	166.9	186.0	210.4	241.3	272.3	302.3	327.9	349.1
PENLC	10.4	20.8	29.9	36.8	43.1	49.7	56.8	64.9	73.7	82.3	93.3	107.3	121.3	135.0	146.6	156.3
PEPCO	70.4	145.6	213.2	260.9	294.3	333.0	384.6	453.6	525.0	612.2	701.9	789.1	872.3	958.6	1,023.1	1,085.7
PL	24.3	48.7	70.0	86.2	100.9	116.4	133.1	152.1	173.0	193.1	218.9	251.8	284.8	316.7	344.0	366.8
PS	131.6	280.5	423.6	546.7	647.8	734.3	809.0	875.6	961.8	1,055.5	1,153.8	1,250.6	1,332.3	1,427.0	1,550.2	1,672.9
RECO	4.3	9.2	13.8	17.7	21.0	23.7	26.1	28.2	30.9	33.8	36.9	39.8	42.4	45.3	49.0	52.7
UGI	0.6	1.2	1.8	2.2	2.6	3.0	3.4	3.9	4.4	4.9	5.5	6.4	7.2	8.0	8.6	9.2
VEPCO	173.3	302.9	392.1	441.6	548.1	673.1	799.6	952.1	1,084.5	1,188.3	1,275.1	1,341.8	1,404.1	1,458.3	1,518.9	1,579.6
PJM RTO	1,159.3	2,274.4	3,220.2	3,888.6	4,604.5	5,391.3	6,233.5	7,181.9	8,203.2	9,233.4	10,256.6	11,237.6	12,180.6	13,145.7	14,071.4	14,972.2

Historical and IHS Nameplate Capacity

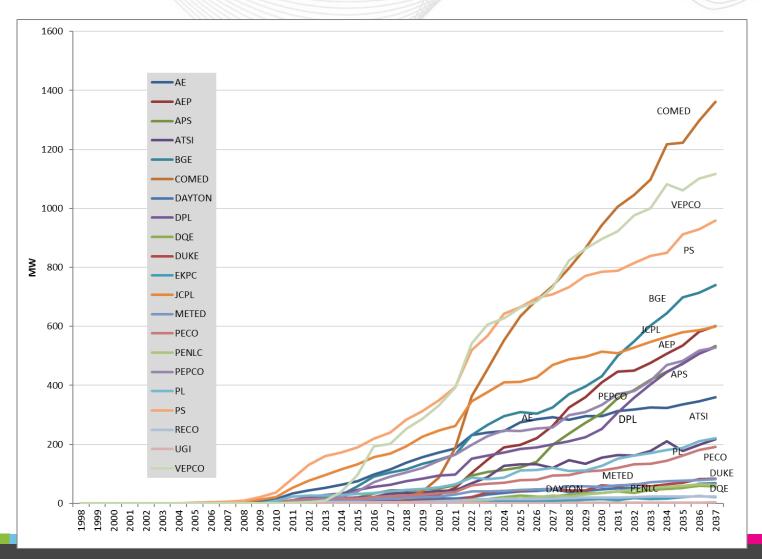
Distributed Solar Generation Forecast by Zone Cumulative Nameplate Capacity


Includes Historical Degraded Values and IHS Forecast

	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037
AE	569.6	598.4	625.9	648.9	667.0	681.9	694.2	704.7	719.6	736.1	753.6	770.7	784.6	801.3	824.2	846.9
AEP	245.7	340.8	409.0	444.6	527.8	630.2	741.8	866.7	989.3	1,071.6	1,130.5	1,183.7	1,238.6	1,298.2	1,364.0	1,428.7
APS	218.9	258.7	292.0	315.8	375.6	455.7	547.2	652.3	759.0	844.9	915.0	979.9	1,044.9	1,111.3	1,171.1	1,228.0
ATSI	184.8	249.1	293.9	312.2	329.2	344.7	359.6	376.7	395.0	409.9	426.9	449.5	474.0	500.0	525.8	549.7
BGE	532.5	603.8	662.4	698.3	729.5	777.1	847.5	948.0	1,051.6	1,190.3	1,340.2	1,489.5	1,638.6	1,787.4	1,898.1	2,006.7
COMED	697.0	917.2	1,114.5	1,262.1	1,380.0	1,510.3	1,651.2	1,791.0	1,945.4	2,099.7	2,250.9	2,368.3	2,489.5	2,627.6	2,753.3	2,880.5
DAYTON	56.7	73.6	85.3	89.8	94.0	97.7	101.3	105.4	109.8	113.3	117.3	122.6	128.4	134.8	141.3	147.4
DPL	316.4	341.0	365.1	381.2	397.6	417.8	442.2	476.1	541.0	649.7	767.1	881.9	985.3	1,070.7	1,147.2	1,223.1
DQE	35.6	43.7	50.8	56.1	61.0	66.1	71.6	77.9	84.8	91.4	99.9	110.8	121.7	132.2	141.0	148.4
DUKE	48.1	71.3	87.6	94.2	100.7	106.9	113.2	120.5	128.2	134.5	141.6	150.6	160.4	170.8	181.4	191.6
EKPC	12.1	13.1	14.1	14.8	16.2	18.3	21.4	25.0	28.6	31.8	35.6	39.4	43.2	46.9	50.6	54.3
JCPL	872.1	942.0	1,009.0	1,065.9	1,111.6	1,150.0	1,182.4	1,210.7	1,249.3	1,291.9	1,337.0	1,381.4	1,418.2	1,461.8	1,520.5	1,579.0
METED	100.8	109.7	117.3	122.9	128.0	133.4	139.2	146.0	153.6	160.8	170.3	182.6	194.9	206.9	217.0	225.4
PECO	142.4	165.2	185.0	199.7	213.0	226.9	242.0	259.2	278.2	296.4	319.9	350.0	380.2	409.3	433.9	454.4
PENLC	24.5	34.9	43.8	50.6	56.8	63.2	70.2	78.2	87.0	95.5	106.3	120.2	134.2	147.7	159.2	168.9
PEPCO	545.9	617.3	681.1	725.0	754.7	789.8	837.7	903.1	970.9	1,054.5	1,140.7	1,224.4	1,304.1	1,387.0	1,448.0	1,507.2
PL	217.6	240.4	260.2	274.9	288.1	302.1	317.3	334.9	354.3	373.0	397.3	428.8	460.3	490.9	516.8	538.2
PS	1,366.8	1,505.9	1,639.1	1,752.5	1,844.0	1,921.0	1,986.1	2,043.3	2,120.2	2,204.6	2,293.7	2,381.4	2,454.0	2,539.7	2,654.1	2,767.9
RECO	33.3	37.9	42.3	46.0	49.0	51.6	53.7	55.6	58.0	60.7	63.6	66.4	68.7	71.3	74.9	78.4
UGI	1.1	1.7	2.3	2.7	3.1	3.4	3.9	4.3	4.9	5.4	6.0	6.8	7.6	8.4	9.1	9.6
VEPCO	1,266.6	1,387.4	1,467.9	1,508.8	1,606.8	1,723.3	1,841.4	1,985.6	2,109.7	2,205.3	2,284.0	2,342.5	2,396.9	2,443.2	2,495.8	2,548.8
PJM RTO	7,488.5	8,553.0	9,448.5	10,067.1	10,733.6	11,471.4	12,265.0	13,165.1	14,138.5	15,121.3	16,097.3	17,031.6	17,928.2	18,847.4	19,727.4	20,583.0

Using Weather Rotation for Solar

 Starting in the 2020 forecast PJM uses the weather rotation for solar estimates. A daily capacity factor linked to the historical UL data will be used. Hour ending 17 will be used for the summer.



www.pjm.com | Public 9 PJM © 2021

Distributed Solar Generation 2022 Forecast by Zone

Capacity in July

Behind the Meter Battery Storage

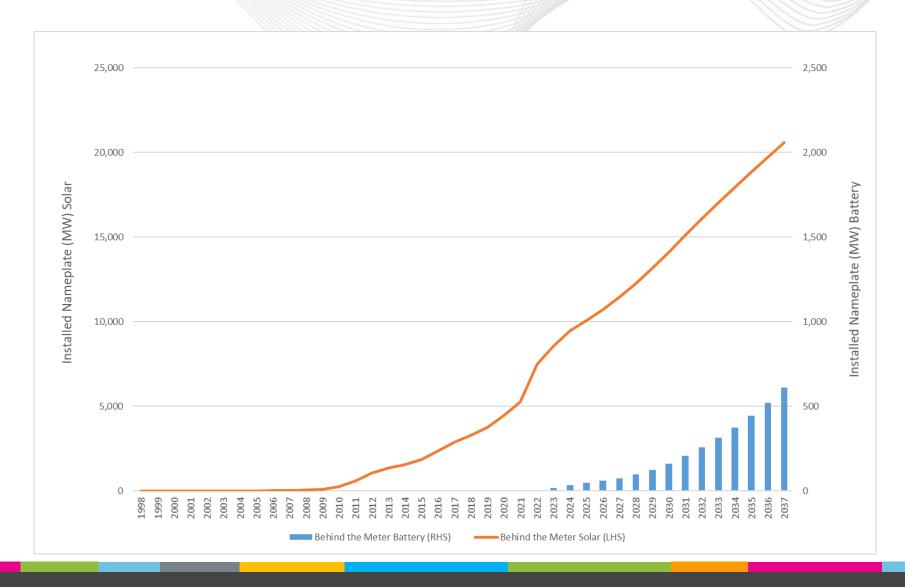
www.pjm.com | Public PJM © 2021

Behind the Meter Battery Forecast

 Starting this year, PJM will use a battery forecast for use in conjunction with the distributed solar forecast.

 The full amount of battery forecast will be used when incorporating into the forecast – the assumption being the battery will be fully charged so it is

available at peak. 1 Solar Peak ••• Solar Production PJM Peak Peak output -Facility Output Battery Charging **Battery Discharging** A Peak Smoothing output shifting Midnight Morning Afternoon


IHS Battery Forecast

Behind the Meter Battery Forecast by Zone Annual Additions of Nameplate Capacity

	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037
AE	0.1	0.3	0.5	0.3	0.3	0.4	0.5	0.7	1.0	0.9	1.0	0.9	0.9	1.1	1.3	1.5
AEP	0.5	0.9	1.3	1.2	1.2	1.6	1.9	2.6	3.3	3.3	3.9	4.5	5.3	6.3	7.5	9.0
APS	0.3	0.6	8.0	0.7	0.6	0.8	1.0	1.4	1.7	2.5	2.9	3.3	3.8	4.2	4.1	4.5
ATSI	0.2	0.5	0.6	0.6	0.6	8.0	1.0	1.3	1.7	1.7	2.1	2.3	2.8	3.5	4.3	5.2
BGE	0.2	8.0	1.2	0.9	0.6	0.8	1.1	1.8	2.4	5.3	6.0	6.8	7.5	8.3	7.4	8.1
COMED	0.9	2.0	2.6	2.1	2.0	2.6	3.5	4.2	5.2	6.2	7.4	7.1	7.2	9.3	11.3	13.9
DAYTON	0.1	0.1	0.2	0.1	0.2	0.2	0.3	0.3	0.4	0.4	0.5	0.6	0.7	0.9	1.1	1.4
DPL	0.2	0.4	0.5	0.4	0.3	0.4	0.5	0.7	0.9	2.2	2.2	2.4	2.5	2.6	2.2	2.5
DQE	0.1	0.1	0.2	0.2	0.2	0.2	0.3	0.3	0.4	0.5	0.6	0.7	0.8	8.0	8.0	0.9
DUKE	0.1	0.2	0.2	0.2	0.2	0.3	0.4	0.5	0.6	0.6	8.0	0.9	1.0	1.3	1.6	2.0
EKPC	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
JCPL	0.3	8.0	1.1	8.0	0.7	0.9	1.2	1.7	2.3	2.2	2.3	2.1	2.2	2.5	3.0	3.7
METED	0.1	0.2	0.2	0.2	0.2	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	0.9	1.0	1.0
PECO	0.2	0.4	0.6	0.6	0.5	0.6	0.7	1.0	1.2	1.4	1.7	1.9	2.2	2.2	2.3	2.5
PENLC	0.1	0.2	0.2	0.3	0.2	0.3	0.3	0.4	0.6	0.6	8.0	8.0	1.0	1.0	1.0	1.1
PEPCO	0.2	8.0	1.1	0.9	0.6	8.0	1.0	1.6	2.1	3.5	3.9	4.3	4.4	4.7	4.1	4.5
PL	0.2	0.4	0.6	0.6	0.5	0.6	8.0	1.0	1.3	1.4	1.8	2.0	2.3	2.4	2.4	2.6
PS	0.5	1.5	2.1	1.5	1.3	1.7	2.3	3.3	4.4	4.3	4.5	4.1	4.3	4.8	5.8	7.0
RECO	0.0	0.0	0.1	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2
UGI	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1
VEPCO	8.0	1.6	2.4	2.2	2.2	2.9	3.4	4.8	6.2	7.2	8.6	9.8	11.3	12.1	14.3	17.5
PJM RTO	5.1	11.7	16.5	14.0	12.7	16.0	20.4	28.3	36.5	45.1	52.0	55.5	61.6	69.4	75.9	89.3

Total PJM Nameplate

 Increased penetration of solar impacting monthly peak shift from July to August

Hourly model framework to include solar and battery hourly shape

 Shift in daily peak hour in some zones from hour ending 17 to hour ending 18

Molly Mooney

molly.mooney@pjm.com

Load_Analysis_Team@pjm.com

Distributed Solar and Battery Update

Member Hotline

(610) 666 - 8980

(866) 400 - 8980

custsvc@pjm.com