

Reactive Capability of Hybrid Resources

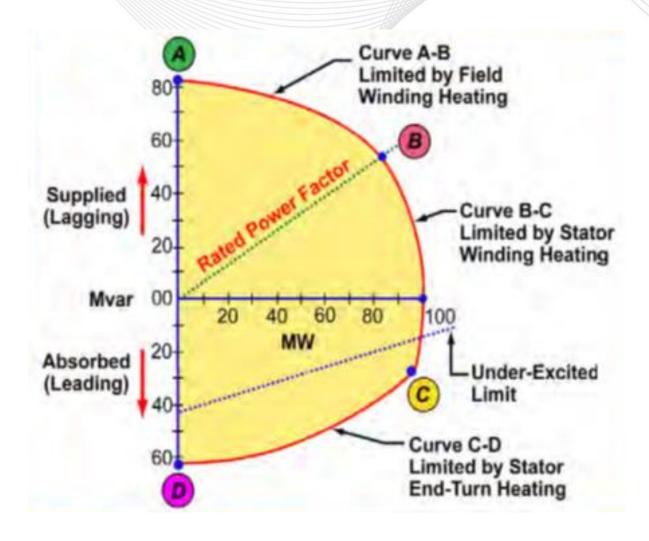
Darrell Frogg Sr. Engineer, Generation

DIRS September 10, 2020

www.pjm.com | Public PJM © 2020

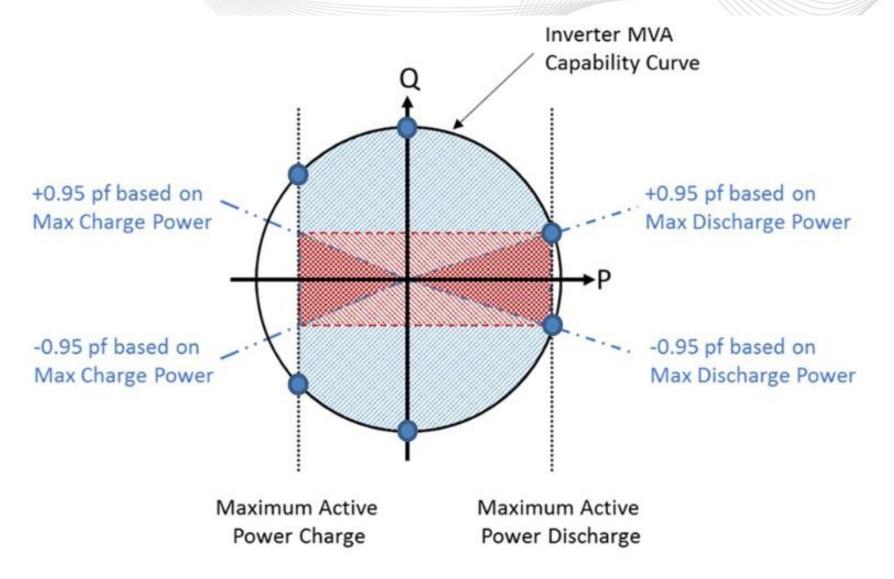
Four types of solar-storage hybrids

	Can charge from grid (open loop)	Cannot charge from grid (closed loop)
Shared Inverters (DC- coupled)		
Separate Inverters (AC- coupled)		


Traditional Generator MW/MVAR Pairing

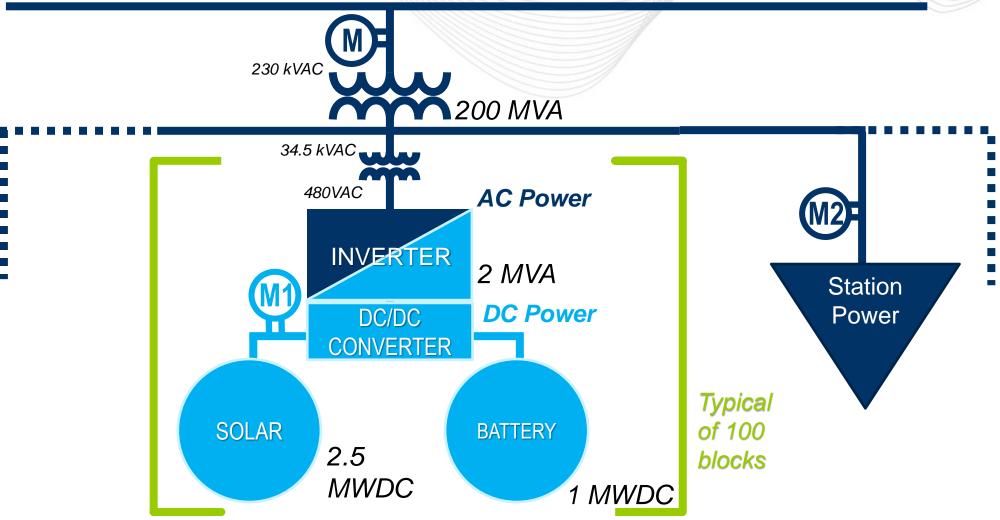
	MW	Minimum MVAR	Maximum MVAR
Point 1	0	-50	50
Point 2	15	-45	45
Point 3	30	-40	40
Point 4	45	-35	35
Point 5	60	-30	30
Point 6	75	-25	25
Point 7	90	-20	20
Point 8	100	-15	15

- Analysis uses the MW
 output of the resource to
 determine where the MVAR
 output
- This is very straightforward for traditional resources or even shared inverters
- A singular Min/Max MVAR pair for each MW output



Traditional D-Curve

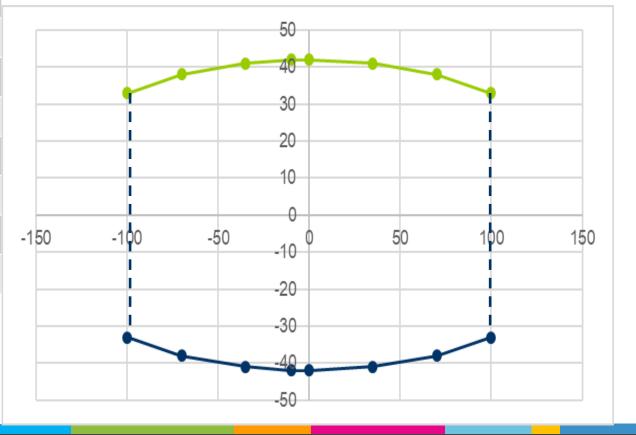
Inverter-Based Reactive Curve



Ex: Solar-Storage Shared Inverter (DC-coupled) Hybrid,

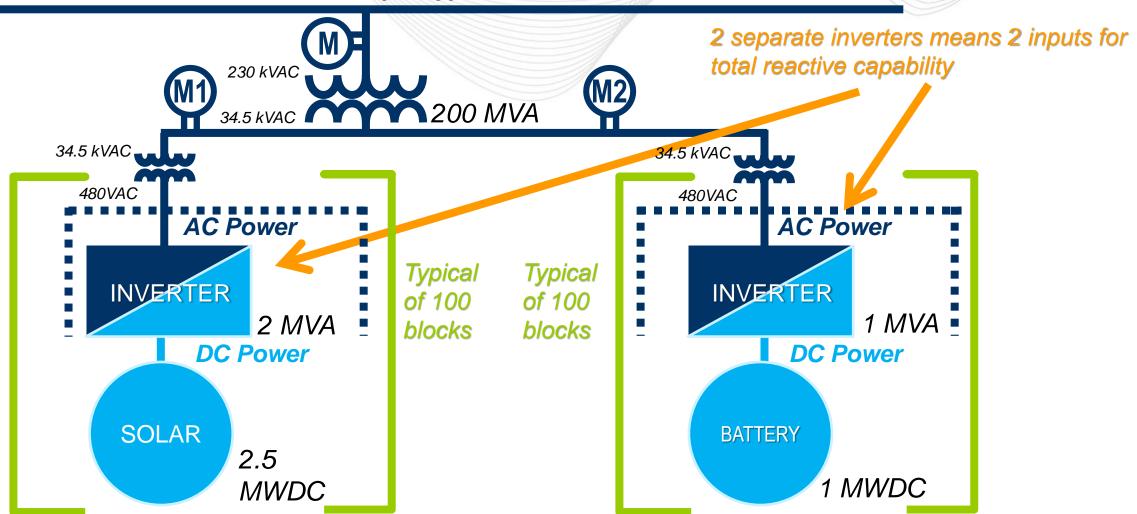
Open or Closed Loop

PJM 230 kV



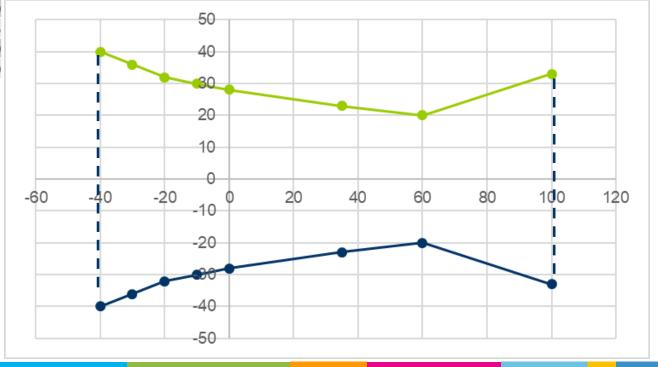
Shared Inverter Capability Curve

Min MVAR Max MVAR MW Point 1 -100 -33 33 Point 2 -70 -38 38 Point 3 -35 41 -41 -10 42 Point 4 -42 -42 Point 5 42 35 -41 41 Point 6 Point 7 70 -38 38 Point 8 100 -33 33


Example of inverter-based DC-coupled solar-storage hybrid

Ex.: Solar-Storage Separate Inverters (AC-coupled) Hybrid

PJM 230 kV



Conservative Reactive Capability

	MW	Min MVAR		output at battery	Example of output at solar terminals
Point 1	-40	-40	40	-40	0
Point 2	-30	-36	36	-40	10
Point 3	-20	-32	32	-40	20
Point 4	-10	-30	30	-40	30
Point 5	0	-28	28	-40	40
Point 6	35	-23	23	-40	75
Point 7	60	-20	20	-40	100
Point 8	100	-33	33	0	100

Example of inverter-based AC-coupled solar-storage hybrid with 100 MW solar and 40 MW battery operated as a single combined unit

Example Testing Summary

Unit Type	MW Output	MVAR Output	Test Duration
DC-COUPLED SOLAR-	MAX	MAX LAG	WHEN LIMIT REACHED
BATTERY HYBRIDS	MAX	MAX LEAD	WHEN LIMIT REACHED
Max MW Output = fully	ZERO	MAX LAG	WHEN LIMIT REACHED
discharging	ZERO	MAX LEAD	WHEN LIMIT REACHED
Min MW Output = fully	MIN	MAX LAG	WHEN LIMIT REACHED
charging	MIN	MAX LEAD	WHEN LIMIT REACHED
AC-COUPLED SOLAR-	MAX	MAX LAG	WHEN LIMIT REACHED
BATTERY HYBRIDS	MAX	MAX LEAD	WHEN LIMIT REACHED
Max MW Output = fully	MAX INVERTER OPERATING		
discharging	NET MW POINT	MAX LAG	WHEN LIMIT REACHED
Min MW Output = fully	MAX INVERTER OPERATING		
charging	NET MW POINT	MAX LEAD	WHEN LIMIT REACHED
Max inverter operating point =	ZERO	MAX LAG	WHEN LIMIT REACHED
solar at full output and battery	ZERO	MAX LEAD	WHEN LIMIT REACHED
at full charging	MIN	MAX LAG	WHEN LIMIT REACHED
*Additional test points may be required			
if these do not capture the most restrictive capability scenarios.	MIN	MAX LEAD	WHEN LIMIT REACHED

www.pjm.com | Public PJM © 2020

Benefits of Simplified Conservative Approach

No additional telemetry required of resources

Less computational stress and complexity for EMS analysis

Allows plant controller to do the work

 Controller is already coordinating resource outputs to prevent any GSU or inverter overloads

www.pjm.com | Public PJM © 2020

Facilitator:

Scott Baker, scott.baker@pjm.com

Secretary:

Hamad Ahmed, hamad.ahmed@pjm.com

Presenter:

Darrell Frogg, darrell.frogg@pjm.com

Reactive Capability of Hybrid Resources

Member Hotline

(610) 666 - 8980

(866) 400 - 8980

custsvc@pjm.com