

No-Load and Incremental Energy Offer Numerical Examples

Tom Hauske Performance Compliance Cost Development Subcommittee March 16, 2021

Creation of a No-Load & Incremental Energy Offer

- Data needed to create a No-Load and Incremental Energy Offer
 - Fuel Price (methodology in Fuel Cost policy)
 - Heat Input or Heat Rate Curve
 - Performance Factor
 - Maintenance Adder
 - Operating Cost Adder
 - Emissions Adders
- The bottom 5 items above are values Market Sellers input into MIRA

Heat Input Curve

- Heat Input Curves are created from:
 - Normal operations data using plant instrumentation
 - Only steady state operation data should be used
 - Performance Test
 - OEM supplied design heat balances
- EXCEL or other data analysis tools used to determine A, B, C, coefficients for polynomial heat input equation

- Heat Input =
$$A + B^*x + C^*x^{2 + \dots}$$

• Where x = MWh

Heat Input from Plant Data

Heat Input Curve for "Steam Unit 1"

- Heat Input Curve Coefficients
 - A = 306.7441
 - B = 9.6894
 - C = 0.0016
- Heat Input Curve
 - Heat Input = $306.7441 + 9.6894^{*}(MWh) + 0.0016^{*}(MWh)^{2}$

Heat Input Curves Submittal

- Heat Input Curves are submitted to PJM and the IMM by MIRA's Cost Offer Assumption's Module (COA)
 - $X^0 = A$, $X^1 = B$, $X^2 = C$, and $X^3 = D$

Schedule ID		1				
Schedule Name		2X1 Gas				
Schedule Description		2 CTs and 1 ST gas fired				
Performance Factor		1.000000000 + Add	Output Range			
Output Range (MW)			Fuel Shares			
From	То	Heat Input Polynomial Coefficients		Energy Source	Share	Actions
0.0	100.0	X ²	Fuel 1 Fuel 2 Fuel 3	NG [Select One] [Select One]		8
100.1	200.0	X ²	Fuel 1 Fuel 2 Fuel 3	NG [Select One] [Select One]		6

Inputs for Steam Unit 1

- Input Variable for the Example
 - Total Fuel related Cost = \$14.00/MMBtu
 - Performance Factor (PF) = 1.02
 - Maintenance and Operating Cost adders (VOM) = \$0.15/MMBtu
 - Emissions adders = \$0

No-Load Fuel is the total fuel to sustain zero net output MW at synchronous generator speed.

using heat input = $306.7441 + 9.6894^{*}(MWh) + 0.0016^{*}(MWh)^{2}$ at 0 MWh = $306.7441 + 9.6894^{*}(0) + 0.0016^{*}(0)^{2}$ (MMBtu/hour) No-Load Heat = 306.7441 MMBtu/hour

No-Load Cost is the hourly cost required to create the starting point of a monotonically increasing incremental offer curve for a generating unit.
 No-Load Cost = No-Load Fuel * PF * (TFRC + VOM) (\$/hour)
 = 306.7441 * 1.02 * (14.0 +0.15) (\$/hour)
 No-Load Cost = \$4,427.24 per hour

Incremental Energy Offer Calculation

- Two ways to calculate incremental energy offers
 - Block Offers
 - Block difference in Total Operating Cost
 - Slope Offers
 - Incremental Heat Rate Curve

Block Load Offers

Calculate Total Operating Costs using total fuel related cost equation from M15 Section 2.3.3

TotalFuelRelatedCosts =

 $FuelCosts + FuelRelatedCosts + SO_2AllowanceCost + CO_2AllowanceCost + NO_xAllowanceCost + MaintenanceAdder$

• Simplifies to:

Total Operating Cost (\$/hr) = Heat Input * PF * (Fuel Cost + VOM) = Heat Input * 1.02 * (14.00 + 0.15)

Steam Unit 1 Operating Cost

Total Operating Cost (50 MWh) = Heat Input(50 MWh) * PF * (Fuel Cost + VOM) (\$/hour) = 795.12 * 1.02 * (14.00 + 0.15)

= 11,476 \$/hour

Output (MWh)	Heat Input (mmBtu/hr)	Operating Cost (\$/hr)
50	795.12	11,476
160	1897.08	27,381
310	3460.75	49,949
410	4542.29	65,559
525	5824.73	84,068
550	6109.00	88,171

Block Load Offers

Incremental Cost (160 MWh) =

[Total Operating Cost (160 MWh) – Total Operating Cost (50 MWh)]/ [160 MWh - 50 MWh] (\$/MWh)

= [27,381 - 11,476] / [160 - 50]

= \$144.59 per MWh

Output (MWh)	Incremental Offer (\$/MWh)
50	140.98*
160	144.59
310	150.46
410	156.10
525	160.95
550	164.11

* When calculating the first incremental the No-Load Cost is used for Total Operating Cost at MWh (0)

Market Gateway Block Load Offer

Typical Oil Heat Rate & Cost Curves for 550 MW Steam Unit

- Slope Offers are calculated using the incremental heat rate equation which is the derivative of the Heat Input equation
 - Heat Input = $306.7441 + 9.6894^{(MWh)} + 0.0016^{(MWh)^2}$
 - Incremental Heat Rate (IHR) = 9.6894 + (2 * 0.0016*(MWh))
- Including Fuel and VOM Cost
 - Incremental Offer (\$/MWh) = IHR * PF * (Fuel Cost + VOM)

Slope Offers

Incremental Cost (50 MWh) = IHR * PF * (Fuel Cost + VOM) = [9.6894 + (2 * 0.0016*50)] * 1.02 * (14.00 + 0.15) = \$142.10 per MWh

Output (MWh)	Incremental Offer (\$/MWh)
50	142.10
160	147.07
310	153.84
410	158.36
525	163.55
550	164.68

Market Gateway Slope Offer

Typical Oil Heat Rate & Cost Curves for 550 MW Steam Unit

Comparison of Slope and Block Offers

Typical Oil Heat Rate & Cost Curves for 550 MW Steam Unit

- 100 MW simple cycle combustion turbine
 - With fuel cost = \$4 /MMBtu
 - performance factor = 1.02
 - 70 MW minimum load
 - Maintenance Adder of \$75 / equivalent service hour (ESH)
 - 10 MW peak firing step with a maintenance factor of 4 for peak firing step

18

Simple Cycle CT Heat Input Curve

Combustion Turbine with Peak Firing Step Heat Input Curve

Heat Input Curve for "CT Unit 2"

- Heat Input Curve
 - Heat Input = $578.23 + 0.8122^{*}(MWh) + 0.0498^{*}(MWh)^{2}$
- Heat Input Curve Coefficients
 - A = 578.23
 - B = 0.8122
 - C = 0.0498
- No-Load Heat = 578.23 MMBtu/hr

Block Load Offers

Calculate No-Load Cost

No-Load Cost = [No-Load Fuel * PF * TFRC] + VOM** (\$/hour) = [578.23 * 1.02 * 4.0] + 0 (\$/hr) No-Load Cost = \$2359.18 per hour

- Calculate Total Operating Cost
- Total Operating Cost (\$/hour) = [Heat Input * PF * Fuel Cost] + [Maintenance Factor[#] * VOM**]

= [Heat Input * 1.02 * 4.00] + [MF * VOM]

** VOM in \$/ESH can be added to either No-Load or first incremental but not both # Maintenance Factor is equal to 1 for base load and below and equal to (4-1) for peak firing step

CT Unit 2 Operating Cost

Total Operating Cost (70 MWh) = (Heat Input(70 MW) * PF * Fuel Cost) + VOM (\$/hr)

= (879.02 * 1.02 * 4.00) + 75

= 3,662 \$/hour

Output (MWh)	Heat Input (mmBtu/hr)	Operating Cost (\$/hr)
70	879.02	3,662
90	1054.57	4,378
100	1157.28	5,022

CT Block Load Offers

Incremental Cost (90 MWh) = [Total Operating Cost (90 MWh) – Total Operating Cost (70 MWh)]/ [90 MWh - 70 MWh] (\$/MWh) = [4,378 – 3,662] / [90 – 70] = \$35.82 per MWh

Output (MWh)	Incremental Offer (\$/MWh)
70	18.61*
90	35.82
100	64.42

* When calculating the first incremental the No-Load Cost is used for Total Operating Cost at MWh (0)

Simple Cycle CT Slope Offer

- Slope Offers are calculated using the incremental heat rate equation which is the derivative of the Heat Input equation
 - Heat Input = $578.23 + 0.8122^{*}(MWh) + 0.0498^{*}(MWh)^{2}$
 - Incremental Heat Rate (IHR) = 0.8122 + (2 * 0.0498*MWh)
- Including Fuel and VOM Cost
 - Incremental Offer (\$/MWh) = [IHR * PF * Fuel Cost] + [(Maintenance Factor[#] * VOM)/ (MWh(1) – MWh(0)]

[#] Maintenance Factor is equal to 1 for base load and below and equal to (4-1) for peak firing step

Incremental Cost (100 MWh) =

[Incremental Offer (\$/MWh) = [IHR * PF * Fuel Cost] + [(Maintenance Factor[#] * VOM)/ (MWh(1) – MWh(0)] \$/MWh

= [(0.8122 + (2 * 0.0498 * 100)) * 1.02 * 4] + [((4 - 1) * 75) / (100 - 90)]

= \$66.45 per MWh

Output (MWh)	Incremental Offer (\$/MWh)
70	32.83
90	39.89
100	66.45

[#] Maintenance Factor is equal to 1 for base load and below and equal to (4-1) for peak firing step

"pjm

CT Block & Slope Offer

Average Heat Rate Example

- 90 MW simple cycle combustion turbine
 - With fuel cost = \$4/MMBtu
 - performance factor = 1.02
 - Offered as one block load
 - Maintenance Adder of \$75 / hour

Using Simple Cycle CT Heat Input Curve

Combustion Turbine with Peak Firing Step Heat Input Curve

Average Heat Rate for "CT Unit 3"

- Calculate Average Heat Rate at 90 MWh
 Average HR = Heat Input (@90 MWh) / 90MWh (MMBtu/MWh)
 - $= [578.23 + 0.8122^{*}(90) + 0.0498^{*}(90)^{2}] / 90$
 - = 11.717 MMBtu/MWh

Average Heat Rate for "CT Unit 3"

- Average Heat Rate = 11.717 MMBtu/MWh
- Heat Input Curve Coefficients entered into MIRA
 - A = 0
 - B = 11.717
 - C = 0
- No-Load Heat = 0 MMBtu/hr

Block Load Offers

Calculate No-Load Cost

No-Load Cost = [No-Load Fuel * PF * TFRC] + VOM** ($\$ /hour) = [0 * 1.02 * 4.0] + 0 ($\$ /hr) No-Load Cost = \$0 per hour

- Calculate Total Operating Cost
- Total Operating Cost (\$/hour) = [Heat Input * PF * Fuel Cost] + VOM**
 = [Heat Input * 1.02 * 4.00] + VOM

** VOM in \$/hour can be added to either No-Load or first incremental but not both

CT Unit 3 Operating Cost

Heat Input (90 MWh) = 0 + (11.718 * 90) + (0 * 90²) (MMBtu/hr) = 1054.57 MMBtu/hr

Total Operating Cost (90 MWh) = (Heat Input(90 MW) * PF * Fuel Cost) + VOM (\$/hr) = (1054.57 * 1.02 * 4.00) + 75 = 4,378 \$/hour

Output (MWh)	Heat Input (mmBtu/hr)	Operating Cost (\$/hr)
90	1054.57	4,378

Average Heat Rate CT Block Load Offers

Incremental Cost (90 MWh) = [Total Operating Cost (90 MWh) – Total Operating Cost (0 MWh)]/ [90 MWh - 0 MWh] (MWh) = [4,378 – 0] / [90 – 0] = \$48.64 per MWh

Output (MWh)	Incremental Offer (\$/MWh)
90	48.64*

* When calculating the first incremental the No-Load Cost is used for Total Operating Cost at MWh (0)

CT Block, Slope, & Average HR Offer

2x1 Combined Cycle Example

 Manual 15 Attachment H Section B.4 provides a similar example for a 2x1 combined cycle with duct firing

Importance of Good Data

- Cost Offers always start with a heat input curve
- When developing heat input curves
 - Try to maximize the number of data points
 - Use steady state operation data
 - Remove obvious bad data

"pjm"

Heat Input Curve with Limited Data

CDS Chair : Nicole Scott , Nicole.Scott@pjm.com

CDS Secretary: Heather Reiter, Heather.Reiter@pjm.com

Presenter/SME: Thomas Hauske, Thomas.Hauske@pjm.com Member Hotline (610) 666 – 8980 (866) 400 – 8980 custsvc@pjm.com