Emerging Technology Forum

Hydrogen 101

Fred Joseck

March 17, 2022

What is Hydrogen?

Lightest of all gases and a versatile, clean and flexible energy carrier

Produced from diverse domestic resources and used in many applications

Global Hydrogen Demand Growth

Global demand for hydrogen has experienced an annual growth rate of ~10-15% from 1975 to 2018

Global annual demand for hydrogen since 1975

Source: IEA report "The Future of Hydrogen, Seizing today's opportunities"

Many Domestic Energy Sources for Hydrogen Production

Domestic energy sources can be used to produce hydrogen

Most of today's hydrogen comes from natural gas

Many Pathways for Hydrogen Production

Source: DOE https://www.energy.gov/eere/fuelcells/articles/incr ease-your-h2iq-training-resource

Today >90% of hydrogen is produced through natural gas steam methane reforming

Cathode +Anode	Cathode +Anode	DIRECT SOLAR WATER SPLITTING	STEAM METHANE REFORMING		
Alkaline Electrolysis Electricity separates water into oxygen and hydrogen	Low & High Temperature Electrolysis Electricity separates water into oxygen and hydrogen	Energy from direct sunlight and sun heat splits molecules	Steam and hydrocarbons come together under high temperature		
Advantages					
 Ultra pure H₂ produced Zero carbon emissions Scalable >30 yrs. in use 	 Ultra pure H₂ produced Zero carbon emissions from nuclear and renewable electricity 	 Ultra pure H₂ produced Zero carbon emissions from H₂ production 	 Scale & Large capacity production Incumbent technology for >90% of H₂ production 		
Disadvantages					
- Lower efficiency electrolysis	- Scale & large scale production	Scale & large scale production	- Hi CO ₂ emissions without capture and sequestration		

Multiple Uses for Hydrogen

Hydrogen can be used in many sectors throughout the economy

Source: DOE https://www.energy.gov/eere/fuelcells/articles/increase-your-h2iq-training-resource

Hydrogen Demand: Growth Progression for Decarbonization

	Refining	
	Chemicals (Ammonia & Methanol)	
	Steel & metals refining	
	Forklifts	
Captive Pro	oduction	5.26
Petroleun	n Refineries	3.60
Ammonia	1	1.27
Methano	I	0.11
Other(e.g	., cyclohexane, aniline, etc.)	0.28
Merchant Production		3.77
Refineries	5	2.64
Ammonio	1	0.87

Other (e.g., cyclohexane, aniline, methanol, etc.)

Total Domestic Production

Future Demand		
Light Duty Vehicles		
Injection into the natural gas system		
Steel		
Synthetic & bio- fuels		
Medium & Heavy duty trucks		
Refining		
Aviation & Marine		
Methanol		
Ammonia		

9.03 Million metric tons/yr.

Source: https://www.hydrogen.energy.gov/pdfs/16015_current_us_h2_production.pdf

0.26

Hydrogen Forecast

Hydrogen in TWh (HHV)

● < 1.8°C

Acil Allen Report - High BP Energy Outlook 2020 - Net Zero IEA Energy Technology Perspectives 2020 - SDS Shell - Sky Scenario Powerfuels in a Renewables World Hydrogen Economy Outlook - Strong Policy

● 1.8 - 2.3°C

Acil Allen Report - Medium BP Energy Outlook 2020 - Rapid Hydrogen Council - 2DS World Energy Council - Unfinished Symphony

Current to 2030

- Steady growth of H₂ demand
 - Current H_2 projects under construction and in operation
 - Limited by electrolyzer capacities to ≤50 MW
 - Proposed electrolyzer plants with capacities of 100 MW
- Infrastructure for large scale use such as pipelines require >7 years to build
 - Plan to build in parallel to growing H₂ demand to transport large quantities of H₂

2035+

- Medium and high scenarios exhibit strong H₂ growth and demand
- To meet the climate targets of the Paris Accord, planning and construction for H₂ infrastructure for large scale H₂ deployment is needed

● > 2.3°C

Acil Allen Report - Low World Energy Council - Modern Jazz Hydrogen Economy Outlook - Weak Policy

Source: PwC "The green hydrogen economy Predicting the decarbonisation agenda of

tomorrow"

Infrastructure

Major challenge for Hydrogen is infrastructure

Hydrogen infrastructure components

- Storage
 - o Gaseous
 - Above ground tanks compressed gas
 - Geologic
 - 3 geologic storage caverns and 1 under construction
 - ➤ ~50 tonne capacity per cavern
 - Located in Gulf Coast region
 - o Liquid
 - Cryogenic
 - Classic example: NASA

• Delivery

- o Gas tank truck
- o Liquid tank truck
- o Pipeline
 - ~1,600 miles of hydrogen pipelines in US
 - Located in Gulf Coast, LA and Indiana lake region

Geologic Storage for Hydrogen

Potential Cavern Storage

Geologic Storage:

- Salt deposit attributes
 - Excellent for storage of high purity hydrogen
 - Large volume storage
 - Minimal leakage potential
- Sedimentary basins
 - Excellent for storage of high purity hydrogen
 - Large volume storage
- Depleted Oil & Gas fields
 - Large volume storage
 - NOT Suitable for storage of high purity hydrogen

Comparison of 2 Energy Systems: Natural Gas and Hydrogen Infrastructure

Infrastructure	Natural Gas	Hydrogen
Pipeline	Many miles throughout the US	~1,600 miles exist <i>Requires alloy piping for high</i> <i>pressure</i>
Storage	Cavern storage, intermediate storage in depleted oil & gas formations	3 caverns at 50 tons per cavern, 1 under construction <i>Requires salt dome geologic</i> <i>storage for high purity</i> H ₂
Liquid systems	LNG systems and terminals	H ₂ liquefiers around the US and Canada, more under construction <i>Systems cost</i> ~\$160 <i>M per 30</i> <i>ton/day unit, high electricity</i> <i>demand</i>
Purity requirements	Meet the FERC requirements for heating value	High purity for fuel cells, moderate purity for refining applications <i>Require hydrogen purity of</i> 99.9999% for fuel cell applications

Electrical Markets

How can the ISOs benefit the buildout of clean hydrogen?

Electrical Grid Offers an Infrastructure Solution for Hydrogen through Distributed Electrolysis

Why hydrogen?

Hydrogen is a DOE Priority

- Hydrogen is central to the Department of Energy's clean energy strategy
- DOE Hydrogen Fuel Cell Technologies Office
 Hydrogen Earthshot
 - Announced by DOE Secretary Granholm in 2021
 - Goal to reduce the cost of hydrogen to \$1/kg in one decade (1-1-1)

Infrastructure Investment and Jobs Act

- Signed into law on November 15, 2021
 by President Biden
- Section 813. Regional Clean Hydrogen Hubs
 - Support the development of at least 4 regional hydrogen hubs
 - Demonstrate the production, processing, delivery, storage and end-use of clean hydrogen
 - Each hub eligible for up to \$2 billion in federal support

DOE Request for Information (RFI) in advance of the planned FOA

- Issued Feb. 16, 2022
- Response due March 8, 2022
- Requests responses for up to 40 questions (not all need to be answered)
- Describes Phases of Hub Funding
 - Phase 1 Hub Planning (8-12 \$1-\$4 M DOE awards over 3-18 months)
 - Phase 2 Hub Construction and Deployment (4-6 \$500 M-\$1 B awards over 5 or more years)

Infrastructure Investment and Jobs Act

Regional Clean Hydrogen Hubs Criteria

- Demonstrate the production of clean hydrogen with a focus on one of the following:
 - Nuclear Energy
 - o Renewable Energy
 - Fossil Fuels

H₂Hubs *must*

- Demonstrably aid the achievement of the clean hydrogen production standard developed under Section 822(a) [defined as 2 kg CO₂e/kg H₂ at the point of production];
- Demonstrate the production, processing, delivery, storage, and end-use of clean hydrogen; and
- Aid the transition to a national clean hydrogen network to facilitate a clean hydrogen economy.

Regional Clean Hydrogen Hubs

End-Use Diversity

- At least one regional clean hydrogen hub shall demonstrate the end-use of clean hydrogen in:
- Electric Power Generation
- Industrial
- Residential and Commercial Heating
- Transportation

Geographic Diversity

Each regional clean hydrogen hub:

- Shall be located in a different region of the U.S.
- Use energy resources that are abundant in that region

Regional Clean Hydrogen Hubs

Feedstock Diversity

• At least one hub demonstrating clean hydrogen production from each of the following sources (i.) fossil fuels, (ii.) **renewable energy**, (iii.) **nuclear energy**

Employment

Priority given to regional clean hydrogen hubs that are likely to create opportunities for skilled training and long-term employment to the greatest number of residents in the region

DEI

Expected that DOE will require a plan for diversity, equity and inclusion

CO2 Emissions

CO₂ Emissions from Hydrogen Production Pathways

Emerging technologies can meet and exceed "Clean H₂" standards

Ranges shown reflect potential variability in upstream leak rates, CCS efficiency, and capture rates. Baseline assumes 90% capture.

Source: Greenhouse Gases, Regulated Emissions, and Energy Use in Technologies Model 2021, https://greet.es.anl.gov/ Source: https://www.energy.gov/sites/default/files/2022-02/h2iqhour-02242022.pdf

CCS: Carbon Capture and Sequestration

GHG: Green House Gas

GREET: Greenhouse gases, Regulated Emissions, and Energy use in Technologies Model

Backup

Hydrogen is an industrial commodity

H₂@Scale

Nuclear Power is a key ingredient to the success of large scale hydrogen utilization of the DOE $H_2@$ Scale strategy

H2@Scale lays a framework for the potential wide-scale production and utilization of hydrogen.

H2@Scale addresses high level energy-related issues such as enabling grid resiliency, energy security, crosssector efficiency improvements, and emissions reductions.