Transmission Expansion Advisory Committee Meeting

2010 Market Efficiency Analysis Input Assumptions

April 14, 2010
• TEAC has expressed concerned over CO2 Emission Assumptions
 – Cap and Trade Legislation under debate
 – Assumptions revised to reflect legislation effective in 2015 to match anticipated Ventyx next release.
 – Sensitivity analysis will be performed on any recommended Market Efficiency Projects for 2010 annual process. (i.e. no carbon legislation)

• Gas Price Assumptions
 – First 24 months – NYMEX futures data
 – 24-48 months uses linear mean reversion process to transition to Ventyx fundamental forecast
 – Beyond 48 months uses Ventyx fundamental forecast based on a Natural Gas Market Forecasting System.
 – Sensitivity analysis will be performed on any recommended Market Efficiency Projects for 2010 annual process.
Market Simulation Input Data

- Study years: 2010, 2013, 2016, 2019, 2024
- PROMOD IV model from Ventyx
- Underlying input data contained in PROMOD Powerbase (February 2009 update)
 - Updated fuel and emission costs as well as verified generating units based on November 2009 PROMOD Powerbase update.
- Powerflow Cases
 - 2010 power flow case to represent today’s “as-is” system
 - 2014 RTEP power flow case to represent future system
Key Input Parameters

- Fuel prices
- Load and energy
- Demand Response
- Future generation scenario
- Emissions prices
- Transmission topology
- Carrying charge rate and discount rate
Load & Energy Input Data

- PJM zonal peak and zonal energy forecast from PJM 2010 Load Forecast Report
- Historical zonal hourly loads used to develop zonal hourly load shape

Table 1 – Forecast PJM Peak and Energy*

<table>
<thead>
<tr>
<th></th>
<th>2010</th>
<th>2013</th>
<th>2016</th>
<th>2019</th>
<th>2024</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak (MW)</td>
<td>147,791</td>
<td>160,082</td>
<td>166,854</td>
<td>172,320</td>
<td>180,387</td>
</tr>
<tr>
<td>Energy (GWh)</td>
<td>784,166</td>
<td>847,046</td>
<td>887,033</td>
<td>912,472</td>
<td>957,144</td>
</tr>
</tbody>
</table>

*ATSI Load included in all years and values reduced by cleared Energy Efficiency from RPM
Demand Response Input Data

• Model zonal demand response consistent with Table B-7 of the 2010 Load Forecast Report with the addition of any cleared FRR resources

Table 2 – Forecast PJM Demand Response

<table>
<thead>
<tr>
<th></th>
<th>2010</th>
<th>2013</th>
<th>2016</th>
<th>2019</th>
<th>2024</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand Response (MW)</td>
<td>4,360</td>
<td>7,296</td>
<td>7,296</td>
<td>7,296</td>
<td>7,296</td>
</tr>
</tbody>
</table>
• generation model includes all existing in-service generation plus active queue generation with executed ISA minus expected future deactivations
• installed reserve requirement is met through study year 2013
• To meet installed reserve requirement for study years 2016, 2019 and 2024, 3,300 MW, 8,000 MW and 17,300 MW of new generation will be added to model, respectively
• New generation will be added to PJM regions in proportion to the regional location and regional generation type of future generation projects in Generation Interconnection Queues through Queue V
Table 3 – Location and Generator Type to Maintain Reserve Margin

<table>
<thead>
<tr>
<th>Region</th>
<th>Nuclear</th>
<th>Coal</th>
<th>Gas</th>
<th>Oil</th>
<th>Wind</th>
<th>Other Renewables</th>
<th>Total Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>AECO/DPL/JCPL/PECO/PSEG</td>
<td>1.1%</td>
<td>0.0%</td>
<td>16.8%</td>
<td>0.3%</td>
<td>0.6%</td>
<td>1.0%</td>
<td>19.8%</td>
</tr>
<tr>
<td>AEP/APS/ATSI/COM/DAY/DUQ</td>
<td>0.6%</td>
<td>10.0%</td>
<td>14.1%</td>
<td>0.0%</td>
<td>18.4%</td>
<td>2.3%</td>
<td>45.4%</td>
</tr>
<tr>
<td>BGE/PEP</td>
<td>5.1%</td>
<td>0.0%</td>
<td>7.5%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.4%</td>
<td>13.0%</td>
</tr>
<tr>
<td>DOM</td>
<td>0.0%</td>
<td>0.0%</td>
<td>9.6%</td>
<td>0.0%</td>
<td>0.1%</td>
<td>0.8%</td>
<td>10.5%</td>
</tr>
<tr>
<td>ME/PN/PPL</td>
<td>5.1%</td>
<td>0.4%</td>
<td>2.3%</td>
<td>2.5%</td>
<td>0.8%</td>
<td>0.3%</td>
<td>11.3%</td>
</tr>
<tr>
<td>Total By Fuel</td>
<td>12.0%</td>
<td>10.4%</td>
<td>50.2%</td>
<td>2.7%</td>
<td>19.9%</td>
<td>4.7%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>
Figure 3 - SO2 Emission Allowance Price Assumptions
Figure 4 - NOx Emission Allowance Price Assumptions

NOx Emission Prices

- Annual Nox
- Seasonal Nox

Years: 2010 to 2024

$/Allowance vs. Year
Figure 5 - CO2 Emission Assumptions

$/Ton

Year

Original
Figure 5 - CO2 Emission Assumptions

Revised

Year

$/Ton
0 5 10 15 20 25 30 35 40
Transmission Topology and Constraints

- **Powerflow Cases**
 - 2010 power flow case to represent today’s “as-is” system
 - 2014 RTEP power flow case to represent future system
- **Thermal Constraints**
 - monitor/contingency pairs
 - NERC Book of Flowgates
 - Planning study results
 - Historical PJM congestion events
- **Voltage Constraints**
 - PJM reactive interface limits
 - MW limits based on historical values for “as-is” case adjusted for future upgrade impacts in 2014 case
Carrying Charge Rate and Discount Rate

- Discount rate and levelized carrying charge rate developed using information contained in TO Formula Rate sheets posted on PJM web site.
- Discount rate based on weighted average after-tax embedded cost of capital (average weighted by TO total capitalization).

 Discount rate = 7.7%

- Levelized annual carrying charge rate based on weighted average net plant carrying charge (average weighted by TO total capitalization) levelized over an assumed 45 year life of project.

 Levelized Annual Carrying Charge Rate = 19.1%
Next Steps

- PJM Board approval of input assumptions in June
- Begin analysis with regular updates to TEAC