Agenda/Objectives for Today’s Meeting

- Introductions
- Project Overview
 - Key Drivers
 - Project Sponsors
- Phase one – Identifying the Alternatives
 - Assumptions and Input Data
 - Metrics
 - Futures
 - Sensitivities
SMART Study - Project Overview

- Comprehensive study of the transmission needed in the Upper Midwest
- Support renewable energy development and transporting that energy to consumers throughout the study area to other users in the rest of the US
- Not in competition with any another study
- Review existing studies and use their results as appropriate
- Study focus is 20 years into the future
- Transcends traditional utility and regional boundaries
SMART Study - Objectives

- Development of EHV overlay alternatives that ensures reliable service for sponsors’ communities, is environmentally friendly, and supports national energy policy
- A reliability analysis and recommendation for technically sound solutions for integration of extra high voltage transmission into the existing transmission system
- An economic analysis of those solutions identified in the technical analysis showing the benefits of extra high voltage transmission to the study regions
SMART Study - Key Drivers

- Open and Transparent Process
- Steering Committee with Project Sponsors
- Stakeholder Input
- Multi-Regional Transmission Focus
- Consistent with National, Regional, and Local Energy Policies
- Technical and Economic Based Alternatives
SMART Study - Project Sponsors

- American Transmission Company (ATC)
- Electric Transmission America, LLC (ETA)
 - American Electric Power (AEP)
 - MidAmerican Energy Holdings Company
- Xcel Energy
- Exelon Corporation
- MidAmerican Energy Company
- NorthWestern Energy
SMART Study – Two Major Phases

- Phase One: Identifying the Alternatives
 - Steady State Analysis
 - Develop several alternatives
 - Develop performance metrics
 - Identify top performing alternatives

- Phase Two: Societal Benefits Evaluation
 - Security Constrained Economic Dispatch
 - Develop Societal Benefits Metrics
 - Evaluate top performing alternative
 - Provide final ranking
Assumptions and Input Data for Phase 1 (con’t)

- **Time Frame**
 - 20 year focus
 - Summer peak case - 2029, 2024, & 2019
 - Light load case - 2029, 2024, & 2019

- **Upper Midwest Focus**
 - North Dakota, South Dakota, Iowa, Nebraska, Indiana, Ohio, Illinois, Minnesota, Wisconsin and Michigan

- **Extent of network modeled**
 - Full Eastern Interconnection as outlined in the 2019 MISO case

- **Future annual load growth from 2019**
 - .85% for AEP service area
 - 1% for MidAmerican service area and MN
 - 1.4% other areas
Assumptions and Input Data for Phase 1 (con’t)

- Geographic distribution of wind farms for updated EHV study
 - Since the precise data of wind farms MW and location for 2029 is not available, we will use appropriate amount of wind generation based on:
 - EIA, MISO, PJM, and other published resources
 - Each Project Sponsor
 - In addition, wider range of wind generation will be studied in sensitivity studies

- Wind energy contribution of wind farms at peak
 - 20% for on-peak and 90% for off-peak
 - MISO uses 20% for on-peak and 90% for off-peak
Assumptions and Input Data for Phase 1 (con’t)

- **Generation additions – assumed mix**
 - Known generation additions in queue will be included, if any
 - Proxy generation will be added based upon an agreed upon mix. A 50/50 mix of gas and conventional steam is assumed
 - MISO uses a 41,000MW high wind case which is made up of 21,000MW wind and 20,000MW other generation (50% natural gas CC and 50% conventional steam)

- **Generation Retirements**
 - Known retirements will be included, if any
 - Coal plants >= 40 years in 2009 will be run as a sensitivity in one or two levels; 100MW or less and/or 250MW or less

- **Dispatch merit order**
 - Provided by ISOs/RTOs and used for off-peak gen profile
Assumptions and Input Data for Phase 1 (con’t)

- Reactive load support in 2029
 - The process is to scale up the load at constant PF and add capacitors to the lower voltages

- Contingencies
 - All N-1 contingencies with additional contingencies supplemented by each company
 - Initially start with the PJM and MISO 2019 contingency list
 - Contingencies will be performed down to the 345kV level and facilities 200kV and above will be monitored
Assumptions and Input Data for Phase 1 (con’t)

- Reliability standards, policies and criteria that govern the area of study
 - NERC TPL 001 through 003 standards
 - More stringent regional and local standards

- EHV Voltage Criteria
 - ISOs/RTOs and each company will supply values for normal and contingent operations
Metrics for Phase 1

- Total alternative cost
- Total transmission circuit miles
 - Circuit miles is a key driver in Total Cost. Proxy metric to assess land owner issues
- Total new stations
- System Losses
 - Capacity Impact from On-Peak Analysis
- Number of Lines
 - Number of Lines is also a key driver in Total Cost. Proxy metric to assess community concerns
Metrics for Phase 1 (con’t):

- FCTTC Imports & Exports in MW
 - Computed from load flow program based on specific network design
 - FCTTC – First Contingency Total Transfer Capability

- Project cost normalized by import and export capability ($/MW)
SMART Study – Generation Futures & Sensitivities

■ Generation Futures
 ▶ Base future
 ▶ High Gas future
 ▶ High Hydro future
 ▶ Low carbon future

■ Sensitivities
 ▶ Higher than forecasted load growth
 ▶ Lower than forecasted load growth
 ▶ Plant retirements – Coal plants >=40 years old - 100MW or less and/or 250MW or less
 ▶ High wind capacity
 ▶ Low wind capacity
 ▶ High wind import and export SPP
QUESTIONS?

http://www.smartstudy.biz
info@smartstudy.biz
dmorrow@quanta-technology.com
tgentile@quanta-technology.com