Transmission Expansion Advisory Committee

Paul McGlynn
February 22, 2008
Long Term Reactive Plan
• In 2006 the Planning Committee approved including reactive planning for a 10 year RTEP model.
• Analysis focuses on 345 kV, 500 kV and 765 kV to determine the more global reactive needs in year 10 – 2017
• Analysis is limited to areas of the system where thermal problems were identified in the 6 -15 year analysis
• For the 2007 RTEP thermal problems were identified in the Eastern Mid-Atlantic, Southwest Mid-Atlantic and Mid-Atlantic regions of PJM
• PJM completed load deliverability voltage analysis for 2017 of the Mid-Atlantic, Southwest Mid-Atlantic and Eastern Mid-Atlantic

• Load deliverability was the main driver for the majority of the overloads identified in years 6 through 15

• High load conditions modeled in the load deliverability analysis are when PJM typically sees voltage issues on the system
• PJM identified the need for approximately 3,000 MVAR of reactive devices by 2017 in order to provide for an adequate voltage profile for N-0 and N-1 conditions

• If the entire 3,000 MVAR were static switched capacitors the cost would be estimated at $60 M

• If 20% of the 3,000 MVAR were required to be dynamic with the remaining switched capacitors the estimated cost would be $108 M

• PJM used $20K per MVAR for static reactive and $100 K per MVAR for dynamic reactive
• PJM performed sensitivity analysis around zonal power factor to determine the magnitude of the reactive reinforcements that would be required if all zones were at unity power factor
• With all transmission owner zones at unity power factor analysis showed we would need approximately 750 MVAR of reactive by 2017 for N-0 and N-1 contingencies
• If the entire 750 MVAR were static capacitors the estimated cost would be $15 M
• If 20% of the 750 MVAR were dynamic reactive devices with the remaining 80% static capacitors the estimated cost would be $27 M
• Last year’s long term reactive analysis identified the need for approximately 10,000 MVAR or reactive reinforcements by 2016.

• Addition of the backbone transmission projects that were identified as part of the 2007 RTEP are likely the main reason for the reduction in reactive requirements.
Supplemental Projects
The Harford County area of the BGE system is experiencing high growth in part due to the Army’s Base Realignment and Closure (BRAC) process.

A new distribution Master Substation, Bagley, is planned to provide the needed capacity in Harford County.

This Bagley site is adjacent to the existing Raphael Rd. to Graceton 230 kV line.

To serve Bagley while not reducing the functionality of the 230 kV circuit for importing power into the Baltimore area, BGE plans to construct a second 230 kV line from Raphael Rd. to the Bagley substation.

BGE is also taking this opportunity to reconfigure the Raphael Rd. 230 kV bus design to breaker and a half to meet BGE’s published design standards. With the current configuration a line fault will drop a 230kV line and a 230/115kV transformer and other line outages can split the 230kV station.
Local Area Map

Graceton

Existing Single Circuit 2313

Bagley

(2003-01559) Raphael Rd - Bagley 230 kV Double Circuit Service Date - June 1, 2011

Raphael Road
• The Bagley Substation is projected to be needed by summer 2011

• Total cost of transmission portion of the project is $20M
 – Rebuild 5.9 miles Raphael Road – Bagley 230 kV to double circuit ($8.5M)
 – Raphael Rd 230kV Substation upgrade to breaker/half ($9.0M)
 – New Bagley 230/34.5kV Station install two 230kV breakers ($2.5M)
2008 RTEP Assumptions
• Power flow models for world load, capacity and topology will be based on the most recent MMWG power flow base cases.
• PJM topology will be based on the latest 2012 base case.
• Long term firm transmission service will be consistent with operations.
• Generation outage rates will be based on the most recent unavailability data available to PJM.
• Generation outage rates for future PJM units will be estimated based on historical outage rates.
• Load will be modeled consistent with the 2008 Load Forecast Report.

• PJM RTO Peak: 149,495 MW
 – PJM South Peak: 21,315 MW
 – PJM West Peak: 66,090 MW
 – PJM Mid-Atlantic: 65,850 MW

• Load Management will be modeled consistent with the 2008 Load Forecast Report
 – Used in LDA under study in load deliverability analysis
2008 RTEP Generation Assumptions

- All existing generation expected to be in service for the year being studied will be modeled.
- Future generation with a signed Interconnection Service Agreement will be modeled along with any associated upgrades.
- Generation with a signed ISA will contribute to and be allowed to back-off problems.
- Generation with a signed Facility Study Agreement (FSA) will be modeled along with any associated network upgrades.
- Generation with a signed FSA will be modeled off-line except for generation deliverability testing to contribute to problems.
- Generation with a signed FSA, but not an ISA, will not be allowed to back-off problems.
- If the PJM load exceeds the sum of the available generation and generation with an executed ISA then queued generation that has an executed FSA will be modeled.
New Generation with an ISA
New Generation with an FSA
New Generation

- **Mid-Atlantic**
 - Parlin, Sewaren, BL England included
 - Benning, Buzzard, Bergen CC, Indian River 1&2 not included
 - New generation with a signed ISA – 1031 MW
 - New generation with a signed FSA – 2438 MW

- **Southern**
 - New generation with a signed ISA – 287 MW
 - New generation with a signed FSA – 3209 MW

- **West**
 - Will County 1 & 2 , Waukegan 6 not included
 - New generation with a signed ISA – 1717 MW
 - New generation with a signed FSA – 3674 MW
2013 RTEP INTERCHANGE

<table>
<thead>
<tr>
<th>FROM</th>
<th>TO</th>
<th>MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>PJM</td>
<td>AMRN</td>
<td>127</td>
</tr>
<tr>
<td>PJM</td>
<td>CIN</td>
<td>708</td>
</tr>
<tr>
<td>PJM</td>
<td>EKPC</td>
<td>0</td>
</tr>
<tr>
<td>PJM</td>
<td>FE</td>
<td>644</td>
</tr>
<tr>
<td>PJM</td>
<td>IP</td>
<td>0</td>
</tr>
<tr>
<td>PJM</td>
<td>LGEE</td>
<td>137</td>
</tr>
<tr>
<td>PJM</td>
<td>OVEC</td>
<td>-1853</td>
</tr>
<tr>
<td>PJM</td>
<td>ALTW</td>
<td>264</td>
</tr>
<tr>
<td>PJM</td>
<td>ALTE</td>
<td>155</td>
</tr>
<tr>
<td>PJM</td>
<td>CPLE</td>
<td>270</td>
</tr>
<tr>
<td>PJM</td>
<td>CPLW</td>
<td>250</td>
</tr>
<tr>
<td>PJM</td>
<td>DUKE</td>
<td>63</td>
</tr>
<tr>
<td>PJM</td>
<td>MEC</td>
<td>1370</td>
</tr>
<tr>
<td>PJM</td>
<td>MECS</td>
<td>574</td>
</tr>
<tr>
<td>PJM</td>
<td>NIPS</td>
<td>0</td>
</tr>
<tr>
<td>PJM</td>
<td>NYIS</td>
<td>1957</td>
</tr>
<tr>
<td>PJM</td>
<td>WEC</td>
<td>1215</td>
</tr>
<tr>
<td>PJM</td>
<td>TVA</td>
<td>918</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>6799</td>
</tr>
</tbody>
</table>
• All PJM bulk electric system facilities 100 kV and greater, all tie lines to neighboring systems and all lower voltage facilities operated by PJM will be monitored.

• Contingency analysis will include all bulk electric system facilities 100 kV and greater, all tie lines to neighboring systems and all lower voltage facilities operated by PJM.

• Thermal and voltage limits will be consistent with those used in operations.
2008 RTEP Status

- Started developing case back in December
- Case has gone through a number of iterations
- Contingency files have been updated for new topology
- Contingency files have been checked for errors
- Case completed
- Initial analysis just getting under way
- Initial results and potential violations will be posted as they become available
- Future TEAC and Subregional RTEP Committee meetings will be scheduled
Transmission Expansion Advisory Committee Meeting

2008 Market Efficiency Analysis Preliminary Input Assumptions

February 22, 2008
Market Simulation Input Data

- PROMOD IV model from New Energy Associates (NEA)
- Underlying input data contained in NEA’s Powerbase (November 2007 update) including generating units and unit characteristics, fuel costs and emissions costs
- NEA Powerbase data based on a variety of sources including Platts, EIA, NYMEX, Evomarkets.com, EPA, FERC, NERC, etc.
- Powerflow Cases
 - 2008 power flow case to represent today’s “as-is” system
 - 2012 RTEP power flow case to represent future system
Key Input Parameters

- Fuel prices
- Load and energy
- Future generation scenario
- Emissions prices
- Transmission topology
- Discount rate
- Upgrade Revenue Requirement
- RPM
• Powerbase fuel prices based on NYMEX futures prices and long-run forecasts from Platts and the Energy Information Administration (EIA)
Figure 1 - Fuel Price Assumptions

- **OIL-L**
- **OIL-H**
- **GAS**
- **Coal**
Load & Energy Data

- PJM zonal peak and zonal energy forecast from PJM 2008 Load Forecast Report
- Historical zonal hourly loads used to develop zonal hourly load shape

<table>
<thead>
<tr>
<th></th>
<th>2008</th>
<th>2011</th>
<th>2014</th>
<th>2017</th>
<th>2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak (MW)</td>
<td>137,948</td>
<td>145,061</td>
<td>151,675</td>
<td>158,176</td>
<td>168,258</td>
</tr>
<tr>
<td>Energy (GWh)</td>
<td>729,819</td>
<td>764,785</td>
<td>798,307</td>
<td>831,606</td>
<td>883,531</td>
</tr>
</tbody>
</table>
Future Generation Scenarios

- generation model includes all existing in-service generation plus active queue generation with executed ISA minus expected future deactivations
- installed reserve requirement is met through 2012
- To meet installed reserve requirement for study years 2014, 2017 and 2022, 3,500 MW, 11,000 MW and 22,600 MW of new generation will be added to model, respectively
- New generation will be added to PJM regions in proportion to the regional location and regional generation type of future generation projects in Generation Interconnection Queues through Queue T
Figure 2 - PJM Market Efficiency Reserve Margin

- Forecasted Summer Peak Net Internal Demand
- Reserve Requirement
- Existing + Queue with Signed ISA - Retirement

Year:
- 2008
- 2009
- 2010
- 2011
- 2012
- 2013
- 2014
- 2015
- 2016
- 2017
- 2018
- 2019
- 2020
- 2021
- 2022

MW:
- 120,000
- 130,000
- 140,000
- 150,000
- 160,000
- 170,000
- 180,000
- 190,000
- 200,000
- 210,000
- 220,000
- 230,000

Values:
- 3,500 MW
- 11,000 MW
- 22,600 MW

Legend:
- Forecasted Summer Peak Net Internal Demand
- Reserve Requirement
- Existing + Queue with Signed ISA - Retirement

Note: The graph shows the forecasted summer peak net internal demand, reserve requirement, and existing plus queue with signed ISA retirement. The values are marked for specific years, with a peak of 22,600 MW forecasted for 2022.
Table 2 - Location and Type of Generation Additions to Maintain Reserve Margin

<table>
<thead>
<tr>
<th>Region</th>
<th>Nuclear</th>
<th>Coal</th>
<th>Gas</th>
<th>Oil</th>
<th>Wind</th>
<th>Other Renewable</th>
</tr>
</thead>
<tbody>
<tr>
<td>AECO/DPL/JCPL/PECO/PSEG</td>
<td>0.3%</td>
<td>2.7%</td>
<td>20.6%</td>
<td>1.5%</td>
<td>1.2%</td>
<td>0.1%</td>
</tr>
<tr>
<td>AEP/APS/COM/DAY/DUQ</td>
<td>0.6%</td>
<td>20.4%</td>
<td>6.3%</td>
<td>0.0%</td>
<td>12.0%</td>
<td>0.8%</td>
</tr>
<tr>
<td>BGE/PEP</td>
<td>3.4%</td>
<td>0.0%</td>
<td>8.3%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>DOM</td>
<td>4.0%</td>
<td>0.4%</td>
<td>4.6%</td>
<td>0.1%</td>
<td>0.0%</td>
<td>0.5%</td>
</tr>
<tr>
<td>ME/PN/PPL</td>
<td>3.3%</td>
<td>4.5%</td>
<td>2.8%</td>
<td>0.0%</td>
<td>1.5%</td>
<td>0.4%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Region</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AECO/DPL/JCPL/PECO/PSEG</td>
<td>26.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AEP/APS/COM/DAY/DUQ</td>
<td>40.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BGE/PEP</td>
<td>11.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOM</td>
<td>9.5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME/PN/PPL</td>
<td>12.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Emissions Prices

- Powerbase emissions allowance prices from a variety of sources including Platt’s BASECASE, Evomarkets.com, and EPA studies.
- Powerbase emissions release rates from a variety of sources including Platt’s BASECASE, EPA CEMS data and EPA studies.
- Powerbase includes emission release rates but no prices for CO2.
- CO2 assumption will be for national program by study year 2011 with allowance prices based on Synapse study.
Figure 3 - SO2 Emission Allowance Price Assumptions

Note: The CAIR legislation requires the generators in 22 states in the East surrender 2 Title IV SO2 allowances beginning in 2010 and 2.86 Title IV SO2 allowances beginning in 2015 for every ton emitted. This is modeled in the Powerbase database by assigning these units with a separate CAIR SO2 allowance price which is twice the price shown from 2010 to 2014 and 2.86 times the price shown beyond 2015.
Figure 4 - NOx Emission Price Assumptions

Note: Beginning in 2009, the SIP Call program is replaced by CAIR NOx programs that are split into seasonal and annual trading programs. Figure 4 shows the addition of these programs for generators covered by both programs (during ozone season only).
Figure 5 - Mercury Price Assumptions

Note: Mercury regulation begins in 2010 with the CAMR legislation.
Figure 6 - CO2 Emission Assumptions

Note: It is assumed that a national CO2 program will be in place by study year 2011.
Transmission Topology and Constraints

- **Powerflow Cases**
 - 2008 power flow case to represent today’s “as-is” system
 - 2012 RTEP power flow case to represent future system

- **Thermal Constraints**
 - monitor/contingency pairs
 - NERC Book of Flowgates
 - Historical PJM congestion events

- **Voltage Constraints**
 - PJM reactive interface limits
 - MW limits based on historical values for “as-is” case adjusted for future upgrade impacts in 2012 case
Discount Rate
• Federal Office of Management and Budget guidance is to use 7% rate with sensitivity analysis at 5% and 9%
• Bright line test dictates use of a single value with no sensitivity analysis
• Discount rate of 9% recommended for cost-benefit analysis conducted as part of 2008 market efficiency analysis

Revenue Requirement
• Use recently approved filings to develop a revenue requirement to project cost ratio to apply to study projects
• 2010/2011 RPM results show a single clearing price across majority of RTO footprint
• future major RTEP upgrades should cause this trend to continue
• Recommended that RPM-related benefits of study upgrades not be calculated in 2008 market efficiency analysis