

# Sub Regional RTEP Committee PJM Mid-Atlantic First Energy MAAC

February 22, 2019

PJM SRRTEP – Mid-Atlantic 2/22/2019 PJM©2019



# Needs

Stakeholders must submit any comments within 10 days of this meeting in order to provide time necessary to consider these comments prior to the next phase of the M-3 process



# JCP&L Transmission Zone

**Need Number:** JCPL-2019-001 to 007

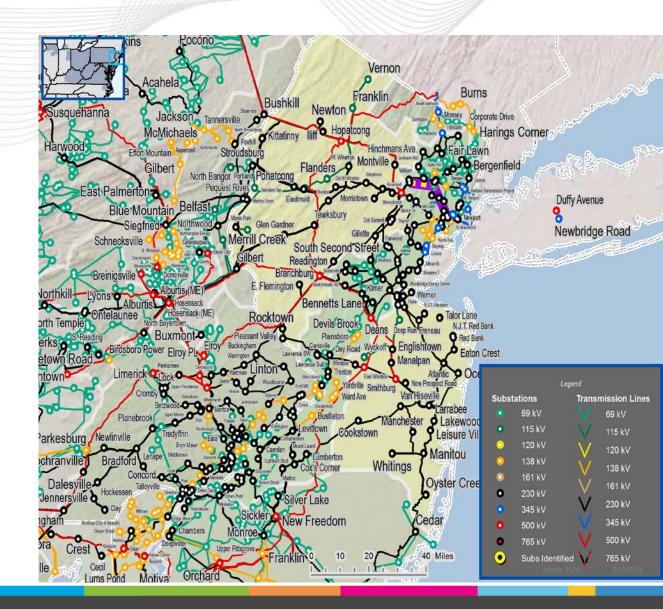
Process Stage: Need Meeting

Date: 02/22/2019

## Project Driver(s):

Equipment Material Condition, Performance and Risk Operational Flexibility and Efficiency

## Specific Assumption Reference(s)


System Performance Projects Global Factors

- System reliability and performance
- Substation/line equipment limits

## Upgrade Relay Schemes

- Relay schemes that have a history of misoperation
- Obsolete and difficult to repair communication equipment (DTT, Blocking, etc.)
- Communication technology upgrades
- Bus protection schemes

Continued on next slide...





- FirstEnergy has identified protection schemes using a certain vintage of relays and communication equipment that have a history of misoperation.
- Proper operation of the protection scheme requires all the separate components perform adequately during a fault.
- In many cases the protection equipment cannot be repaired due to a lack of replacement parts and available expertise in the outdated technology.
- Transmission line ratings are limited by terminal equipment.

| JCPL-2019- | Transmission Line / Substation Locations        | Existing Line<br>Rating<br>(SN / SE) | Existing<br>Conductor Rating<br>(SN / SE) | Limiting Terminal Equipment                 |
|------------|-------------------------------------------------|--------------------------------------|-------------------------------------------|---------------------------------------------|
| 001        | Atlantic – Freneau 230 kV Line                  | 678 / 813                            | 709 / 869                                 | Substation Conductor                        |
| 002        | Kittatinny – Pohatcong 230 kV Line              | 650 / 817                            | 709 / 869                                 | Substation Conductor                        |
| 003        | Kittatinny – Portland 230 kV Line               | 1114 / 1195                          | 1114 / 1285                               | Line Relaying                               |
| 004        | Lakewood – Leisure Village 230 kV Line          | 650 / 817                            | 709 / 869                                 | Substation Conductor                        |
| 005        | Leisure Village – Manitou 230 kV Line           | 650 / 817                            | 709 / 869                                 | Substation Conductor                        |
| 006        | Morristown - Stony Brook - Whippany 230 kV Line | 678 / 802                            | 709 / 869                                 | Line Relaying, Substation Conductor / Drops |
| 007        | Traynor – Whippany 230 kV Line                  | 678 / 802                            | 709 / 869                                 | Line Relaying, Substation Conductor / Drops |



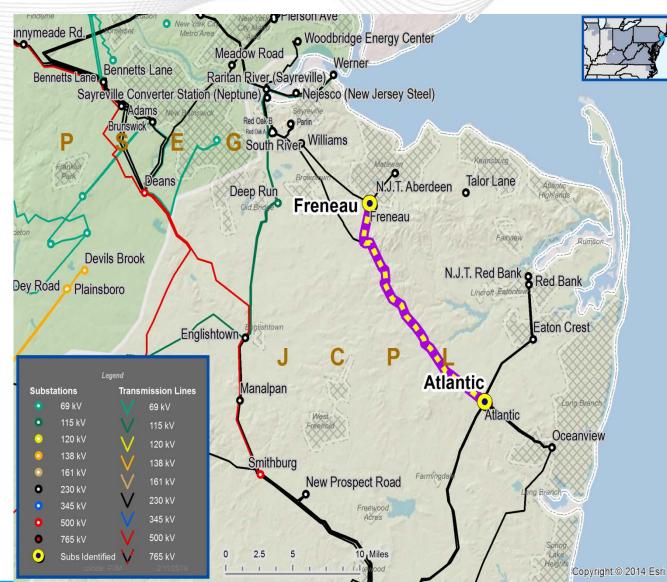
JCP&L Transmission Zone

JCPL-2019-001 **Need Number: Process Stage: Need Meeting** 02/22/2019 Date:

## Project Driver(s):

Equipment Material Condition, Performance and Risk Operational Flexibility and Efficiency

## Specific Assumption Reference(s)


System Performance Projects Global Factors

- System reliability and performance
- Substation/line equipment limits

#### **Upgrade Relay Schemes**

- Relay schemes that have a history of misoperation
- Obsolete and difficult to repair communication equipment (DTT, Blocking, etc.)
- Communication technology upgrades
- Bus protection schemes

- FirstEnergy has identified protection schemes using a certain vintage of relays and communication equipment that have a history of misoperation.
- Proper operation of the protection scheme requires all the separate components perform adequately during a fault.
- In many cases the protection equipment cannot be repaired due to a lack of replacement parts and available expertise in the outdated technology.
- Transmission line ratings are limited by terminal equipment.





Need Number: JCPL-2019-002

Process Stage: Need Meeting

Date: 02/22/2019

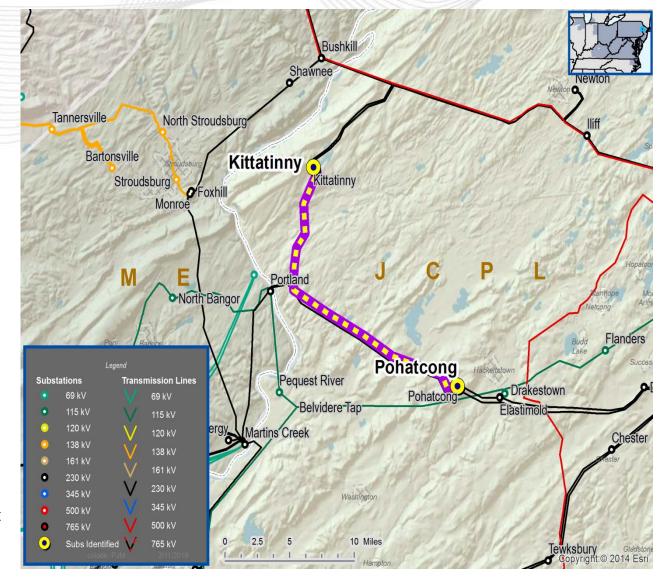
## Project Driver(s):

Equipment Material Condition, Performance and Risk Operational Flexibility and Efficiency

## Specific Assumption Reference(s)

System Performance Projects Global Factors

- System reliability and performance
- Substation/line equipment limits


#### **Upgrade Relay Schemes**

- Relay schemes that have a history of misoperation
- Obsolete and difficult to repair communication equipment (DTT, Blocking, etc.)
- Communication technology upgrades
- Bus protection schemes

#### **Problem Statement**

- FirstEnergy has identified protection schemes using a certain vintage of relays and communication equipment that have a history of misoperation.
- Proper operation of the protection scheme requires all the separate components perform adequately during a fault.
- In many cases the protection equipment cannot be repaired due to a lack of replacement parts and available expertise in the outdated technology.
- Transmission line ratings are limited by terminal equipment.

# JCP&L Transmission Zone





Need Number: JCPL-2019-003

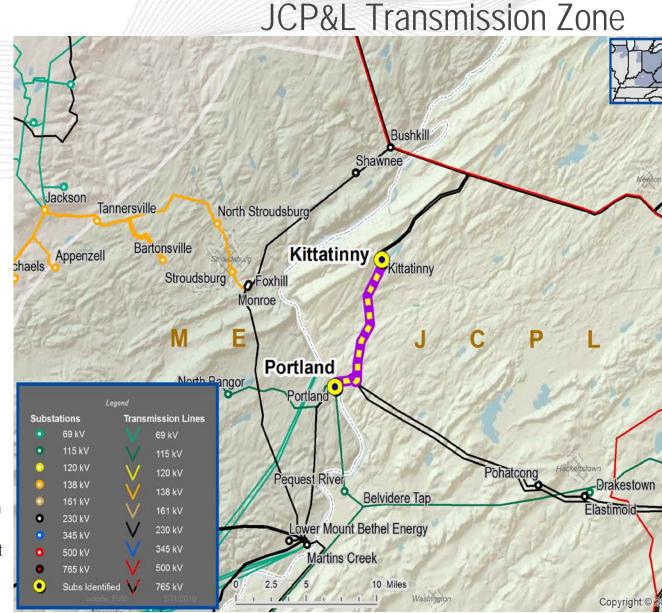
Process Stage: Need Meeting

Date: 02/22/2019

## Project Driver(s):

Equipment Material Condition, Performance and Risk Operational Flexibility and Efficiency

## Specific Assumption Reference(s)


System Performance Projects Global Factors

- System reliability and performance
- Substation/line equipment limits

#### **Upgrade Relay Schemes**

- Relay schemes that have a history of misoperation
- Obsolete and difficult to repair communication equipment (DTT, Blocking, etc.)
- Communication technology upgrades
- Bus protection schemes

- FirstEnergy has identified protection schemes using a certain vintage of relays and communication equipment that have a history of misoperation.
- Proper operation of the protection scheme requires all the separate components perform adequately during a fault.
- In many cases the protection equipment cannot be repaired due to a lack of replacement parts and available expertise in the outdated technology.
- Transmission line ratings are limited by terminal equipment.





Need Number: JCPL-2019-004

Date: 02/22/2019

## Project Driver(s):

**Process Stage:** 

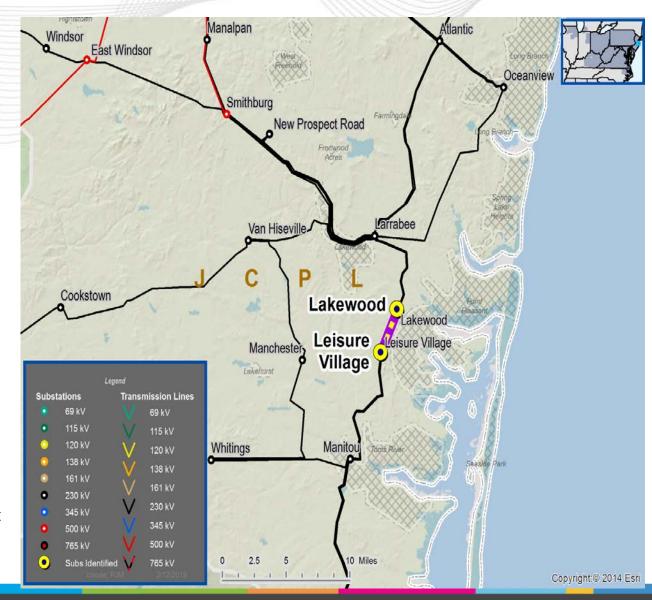
Equipment Material Condition, Performance and Risk Operational Flexibility and Efficiency

**Need Meeting** 

## Specific Assumption Reference(s)

System Performance Projects Global Factors

- System reliability and performance
- Substation/line equipment limits


#### **Upgrade Relay Schemes**

- Relay schemes that have a history of misoperation
- Obsolete and difficult to repair communication equipment (DTT, Blocking, etc.)
- Communication technology upgrades
- Bus protection schemes

#### **Problem Statement**

- FirstEnergy has identified protection schemes using a certain vintage of relays and communication equipment that have a history of misoperation.
- Proper operation of the protection scheme requires all the separate components perform adequately during a fault.
- In many cases the protection equipment cannot be repaired due to a lack of replacement parts and available expertise in the outdated technology.
- Transmission line ratings are limited by terminal equipment.

# JCP&L Transmission Zone





Need Number: JCPL-2019-005

Date: 02/22/2019

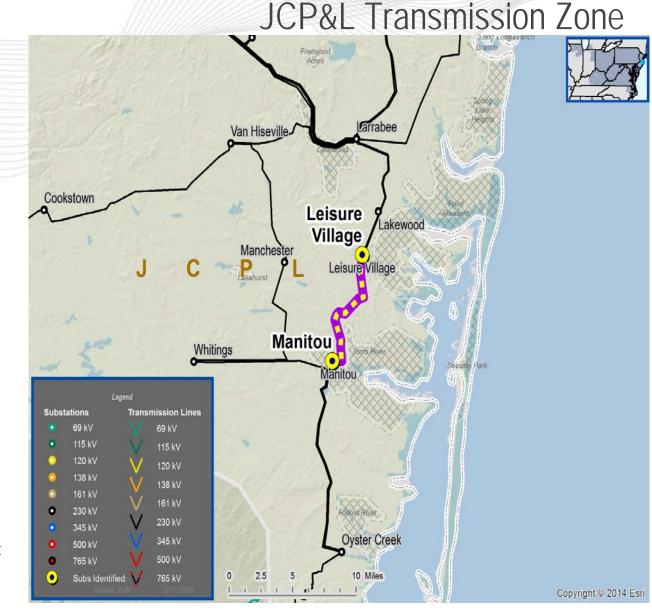
## Project Driver(s):

**Process Stage:** 

Equipment Material Condition, Performance and Risk Operational Flexibility and Efficiency

**Need Meeting** 

## Specific Assumption Reference(s)


System Performance Projects Global Factors

- System reliability and performance
- Substation/line equipment limits

#### **Upgrade Relay Schemes**

- Relay schemes that have a history of misoperation
- Obsolete and difficult to repair communication equipment (DTT, Blocking, etc.)
- Communication technology upgrades
- Bus protection schemes

- FirstEnergy has identified protection schemes using a certain vintage of relays and communication equipment that have a history of misoperation.
- Proper operation of the protection scheme requires all the separate components perform adequately during a fault.
- In many cases the protection equipment cannot be repaired due to a lack of replacement parts and available expertise in the outdated technology.
- Transmission line ratings are limited by terminal equipment.





Need Number: JCPL-2019-006

Process Stage: Need Meeting

Date: 02/22/2019

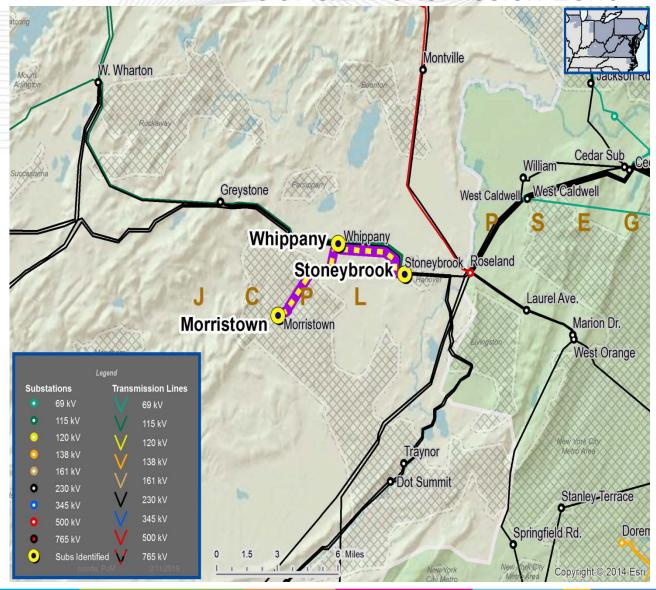
## Project Driver(s):

Equipment Material Condition, Performance and Risk Operational Flexibility and Efficiency

## Specific Assumption Reference(s)

System Performance Projects Global Factors

- System reliability and performance
- Substation/line equipment limits


#### **Upgrade Relay Schemes**

- Relay schemes that have a history of misoperation
- Obsolete and difficult to repair communication equipment (DTT, Blocking, etc.)
- Communication technology upgrades
- Bus protection schemes

#### **Problem Statement**

- FirstEnergy has identified protection schemes using a certain vintage of relays and communication equipment that have a history of misoperation.
- Proper operation of the protection scheme requires all the separate components perform adequately during a fault.
- In many cases the protection equipment cannot be repaired due to a lack of replacement parts and available expertise in the outdated technology.
- Transmission line ratings are limited by terminal equipment.

JCP&L Transmission Zone





Need Number: JCPL-2019-007

Process Stage: Need Meeting

Date: 02/22/2019

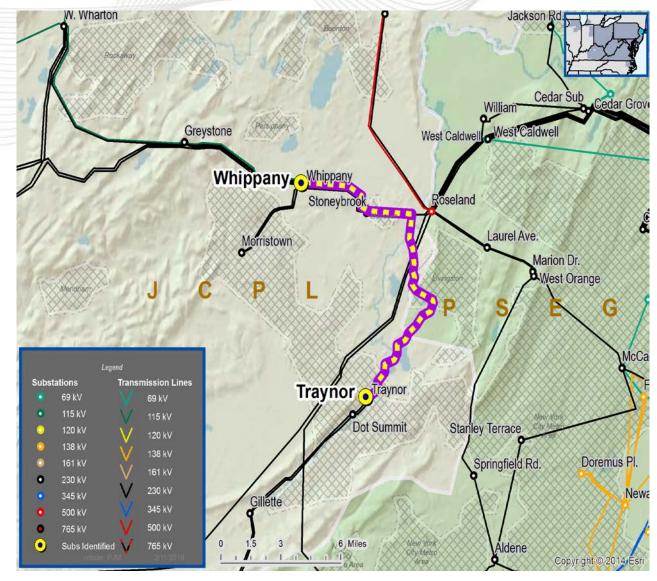
## Project Driver(s):

Equipment Material Condition, Performance and Risk Operational Flexibility and Efficiency

## Specific Assumption Reference(s)

System Performance Projects Global Factors

- System reliability and performance
- Substation/line equipment limits


#### **Upgrade Relay Schemes**

- Relay schemes that have a history of misoperation
- Obsolete and difficult to repair communication equipment (DTT, Blocking, etc.)
- Communication technology upgrades
- Bus protection schemes

#### **Problem Statement**

- FirstEnergy has identified protection schemes using a certain vintage of relays and communication equipment that have a history of misoperation.
- Proper operation of the protection scheme requires all the separate components perform adequately during a fault.
- In many cases the protection equipment cannot be repaired due to a lack of replacement parts and available expertise in the outdated technology.
- Transmission line ratings are limited by terminal equipment.

# JCP&L Transmission Zone





**Need Number:** ME-2019-001 to ME-2019-003

ME-2019-005 to ME-2019-014 &

ME-2019-020

Process Stage: Need Meeting

Date: 02/22/2019

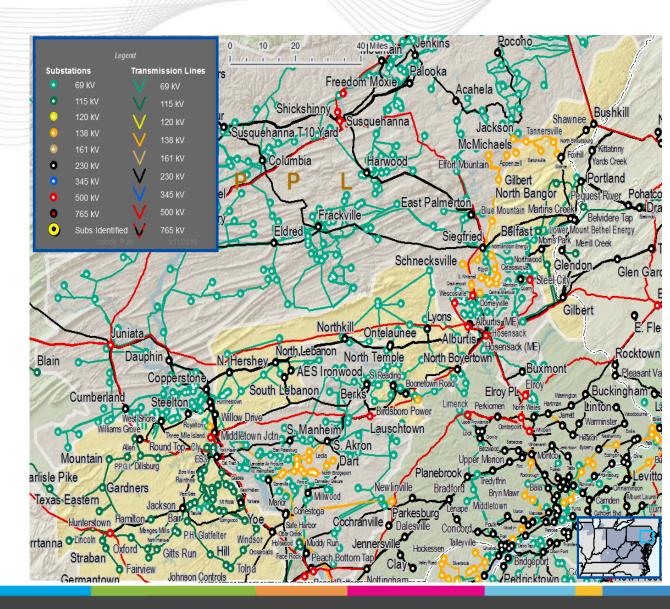
Project Driver(s):

Equipment Material Condition, Performance and Risk

Specific Assumption Reference(s)

Line Condition Rebuild/Replacement

Age/condition of wood pole transmission line structures


Age/condition of steel tower or steel pole transmission line structures

Age/condition of transmission line conductors

System Performance Projects

Substation/line equipment limits

- Line sections are exhibiting deterioration, increasing maintenance needs. Transmission line is approaching end of life
- Transmission line ratings are limited by terminal equipment.





| ME-<br>2019- | Transmission Line / Substation Locations | Existing Circuit<br>Rating (SN / SE) | Existing Conductor<br>Rating (SN / SE) | Limiting Terminal Equipment  | Length of Line (miles) | Identified Structures<br>(end of life / total) | Failure reasons                             |
|--------------|------------------------------------------|--------------------------------------|----------------------------------------|------------------------------|------------------------|------------------------------------------------|---------------------------------------------|
|              | Adamstown – Flying Hills 69 kV Line      | 53 / 64                              | 53 / 64                                | -                            | 6.6                    | 79 / 92                                        | Age, top rot, voids, woodpecker holes, etc. |
| 001          | Flying Hills – South Reading 69 kV Line  | 53 / 64                              | 80 / 96                                | Substation Conductor / Drops | 2.4                    | (86% Failure Rate)                             |                                             |
| 002          | Baldy – Weisenberg 69 kV Line            | 62 / 62                              | 80 / 96                                | Relays, Substation Conductor | 9.1                    |                                                | Top rot, voids, woodpecker holes, etc.      |
|              | Weisenberg – Lynnville 69 kV Line        | 89 / 107                             | 89 / 107                               | -                            | 5.0                    | 180 / 514<br>(35% Failure Rate)                |                                             |
|              | Lynnville – South Hamburg 69 kV Line     | 51 / 66                              | 74 / 90                                | Substation Conductor         | 15.1                   | (55701 allule Ivale)                           |                                             |
|              | North Temple – Berkley Tap 69 kV Line    | 113 / 148                            | 139 / 169                              | Substation Conductor         | 1.0                    |                                                | Top rot, voids,<br>woodpecker holes, etc.   |
| 003          | Berkley Tap - Berkley 69 kV Line         | 51 / 66                              | 55 / 56                                | Substation Conductor         | 0.01                   |                                                |                                             |
|              | Berkley Tap – Cambridge Lee 69 kV Line   | 139 / 169                            | 139 / 169                              | -                            | 0.1                    | 43 / 150<br>(29% Failure Rate)                 |                                             |
|              | Cambridge Lee – Bern Church 69 kV Line   | 55 / 56                              | 55 / 56                                | -                            | 4.8                    | (2070 : amaro : tato)                          |                                             |
|              | Bern Church – Northkill 69 kV line       | 80 / 96                              | 80 / 96                                |                              | 6.4                    |                                                |                                             |
| 005          | Carsonia – South Reading 813 69 kV Line  | 78 / 94                              | 162 / 198                              | Substation Conductor / Drops | 3.7                    | 3 / 37<br>(8% Failure Rate)                    | Top rot                                     |
| 006          | East Topton – Huffs Church 69 kV Line    | 50 / 50                              | 80 / 96                                | Relays, Substation Conductor | 5.3                    |                                                | Top rot, bottom rot, woodpecker holes, etc. |
|              | Huffs Church – Barto 69 kV Line          | 80 / 96                              | 80 / 96                                | -                            | 5.4                    | 92 / 227<br>(41% Failure Rate)                 |                                             |
|              | Barto - North Boyertown 69 kV Line       | 80 / 96                              | 80 / 96                                | -                            | 3.9                    | (,                                             |                                             |



| ME-<br>2019- | Transmission Line / Substation Locations         | Existing Clrcuit<br>Rating<br>(SN / SE) | Existing<br>Conductor<br>Rating (SN / SE) | Limiting Terminal Equipment                       | Length of<br>Line<br>(miles) | Identified<br>Structures (end<br>of life / total) | Failure reasons                                                      |
|--------------|--------------------------------------------------|-----------------------------------------|-------------------------------------------|---------------------------------------------------|------------------------------|---------------------------------------------------|----------------------------------------------------------------------|
| 007          | Alcoa – South Lebanon 69 kV Line                 | 82 / 103                                | 111 / 134                                 | Disconnect Switches, Relays                       | 4.0                          | 93 / 103<br>(90% Failure Rate)                    | Age, decay,<br>woodpecker holes                                      |
| 000          | Bernville – State Street 69 kV Line              | 52 / 66                                 | 60 / 75                                   | Substation Conductor                              | 10.7                         | 155 / 181                                         | Age, sound,<br>woodpecker holes                                      |
| 800          | State Street – South Hamburg 69 kV Line          | 88 / 93                                 | 139 / 169                                 | Substation Conductor, Relays                      | 0.8                          | (86% Failure Rate)                                |                                                                      |
|              | Campbelltown – Swatara Hill 69 kV Line           | 71 / 90                                 | 74 / 90                                   | Substation Conductor                              | 10.5                         | 57 / 288                                          | Age, top rot, voids,<br>woodpecker holes                             |
| 009          | Swatara Hill – Middletown Junction 69 kV<br>Line | 71 / 91                                 | 121 / 150                                 | Substation Conductor, Disconnect Switches         | 2.5                          | (20% Failure Rate)                                |                                                                      |
|              | Middletown Junction – York Haven 115 kV<br>Line  | 129 / 156                               | 129 / 156                                 | -                                                 | 4.0                          | 100 / 120<br>(83% Failure Rate)                   | Age, bad/cut/missing grounds, etc.                                   |
| 010          | York Haven – Zions View 115 kV Line              | 129 / 156                               | 129 / 156                                 | -                                                 | 4.8                          |                                                   |                                                                      |
|              | Zions View – Smith Street 115 kV Line            | 126 / 149                               | 129 / 156                                 | Substation Conductor                              | 6.6                          |                                                   |                                                                      |
|              | Allentown Cement – St Peters 69 kV Line          | 53 / 64                                 | 53 / 64                                   | -                                                 | 2.0                          |                                                   | Age, bad/cut/missing<br>grounds, sound,<br>woodpecker holes,<br>etc. |
| 011          | St Peters – South Hamburg 69 kV Line             | 51 / 64                                 | 53 / 64                                   | Substation Conductor                              | 7.5                          | 148 / 225                                         |                                                                      |
| 011          | St Peters – Moselem 69 kV Line                   | 132 / 158                               | 139 / 169                                 | Substation Conductor                              | 1.5                          | (70% Failure Rate)                                |                                                                      |
|              | Moselem – Lyons 69 kV Line                       | 51 / 64                                 | 53 / 64                                   | Substation Conductor                              | 4.2                          |                                                   |                                                                      |
| 012          | North Temple – Royal Green Tap 69 kV Line        | 82 / 103                                | 139 / 169                                 | Disconnect Switches, Substation Conductor, Relays | 0.4                          |                                                   | Age, bad/cut/missing<br>grounds, rot, sound,<br>woodpecker holes     |
|              | Royal Green Tap – Royal Green 69 kV Line         | 82 / 103                                | 89 / 107                                  | Disconnect Switch                                 | 0.1                          |                                                   |                                                                      |
|              | Royal Green Tap – Berkley Tap 69 kV Line         | 82 / 103                                | 139 / 169                                 | Disconnect Switch                                 | 0.6                          | 159 / 208                                         |                                                                      |
|              | Berkley Tap – Berkley 69 kV Line                 | 51 / 64                                 | 53 / 64                                   | Substation Conductor                              | 0.01                         | (76% Failure Rate)                                |                                                                      |
|              | Berkley Tap – Leesport 69 kV Line                | 53 / 64                                 | 53 / 64                                   | -                                                 | 3.6                          |                                                   |                                                                      |
|              | Leesport – South Hamburg 69 kV Line              | 51 / 64                                 | 53 / 64                                   | Substation Conductor                              | 7.2                          |                                                   |                                                                      |





| ME-<br>2019- | Transmission Line / Substation Locations | Existing<br>Circuit<br>Rating<br>(SN / SE) | Existing<br>Conductor<br>Rating (SN / SE) | Limiting Terminal Equipment                  | Length of Line<br>(miles) | Identified<br>Structures (end<br>of life / total) | Failure reasons                                                                                 |
|--------------|------------------------------------------|--------------------------------------------|-------------------------------------------|----------------------------------------------|---------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------|
|              | Alcoa – North Cornwall 69 kV Line        | 82 / 103                                   | 102 / 124                                 | Disconnect Switches                          | 3.1                       | 126 / 164<br>(77% Failure Rate)                   | Age, bad/cut/missing grounds, top rot/decay, woodpecker holes, etc.                             |
| 013          | North Cornwall – Broad Street 69 kV Line | 82 / 103                                   | 111 / 134                                 | Disconnect Switches, Substation<br>Conductor | 2.0                       |                                                   |                                                                                                 |
|              | North Hershey – Grantville 69 kV Line    | 80 / 96                                    | 80 / 96                                   | -                                            | 1.5                       | 79 / 91<br>(87% Failure Rate)                     | Age, bad/cut/missing grounds, decay, woodpecker holes, etc.                                     |
| 014          | Grantville - Turf Club 69 kV Line        | 64 / 65                                    | 64 / 65                                   | -                                            | 3.0                       |                                                   |                                                                                                 |
| 020          | South Lebanon – Bayer Labs 69 kV Line    | 51/56                                      | 55/56                                     | Substation Conductor                         | 5.9                       | 400 / 000                                         | Age, bad/cut/missing<br>grounds, decay, split<br>top, static bayonet,<br>woodpecker holes, etc. |
|              | Bayer Labs – Myerstown 69 kV Line        | 55/56                                      | 55/56                                     | -                                            | 1.1                       | 163 / 203<br>(80% Failure Rate)                   |                                                                                                 |



Need Number: ME-2019-001

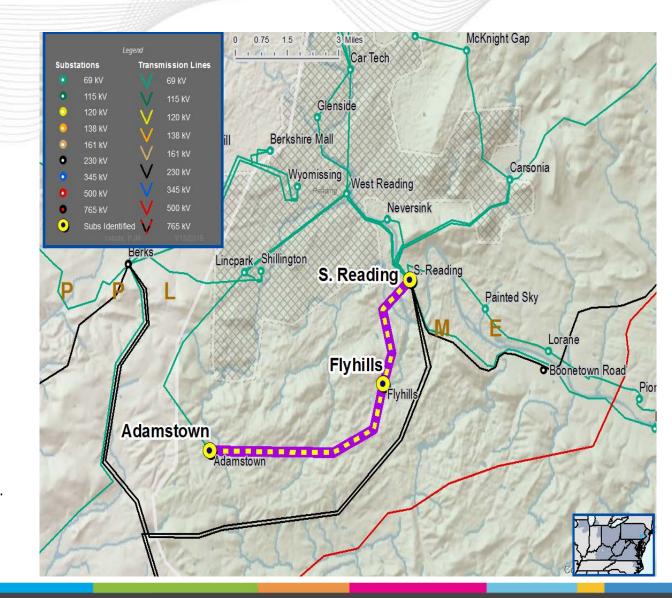
**Process Stage:** Need Meeting

Date: 02/22/2019

Project Driver(s):

Equipment Material Condition, Performance and Risk

Specific Assumption Reference(s)


Line Condition Rebuild/Replacement

- Age/condition of wood pole transmission line structures
- Age/condition of steel tower or steel pole transmission line structures
- Age/condition of transmission line conductors

System Performance Projects

Substation/line equipment limits

- Line sections are exhibiting deterioration, increasing maintenance needs.
   Transmission line is approaching end of life
- Transmission line ratings are limited by terminal equipment.





Need Number: ME-2019-002

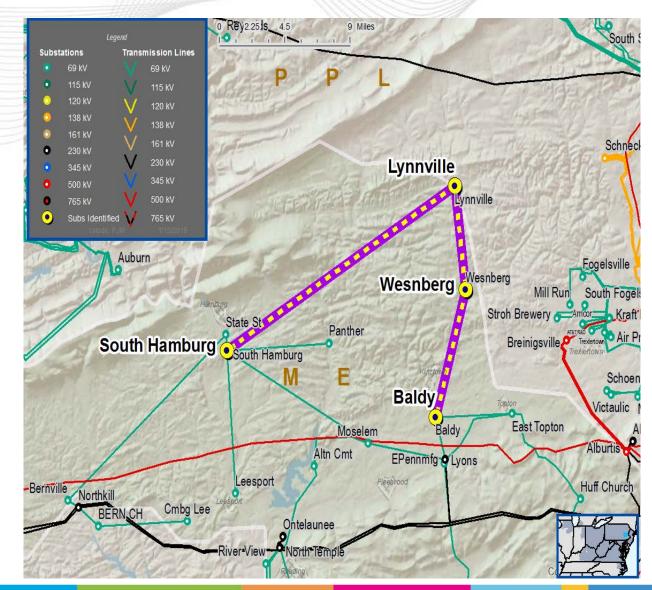
Process Stage: Need Meeting

Date: 02/22/2019

Project Driver(s):

Equipment Material Condition, Performance and Risk

Specific Assumption Reference(s)


Line Condition Rebuild/Replacement

- Age/condition of wood pole transmission line structures
- Age/condition of steel tower or steel pole transmission line structures
- Age/condition of transmission line conductors

System Performance Projects

Substation/line equipment limits

- Line sections are exhibiting deterioration, increasing maintenance needs.
   Transmission line is approaching end of life
- Transmission line ratings are limited by terminal equipment.





Need Number: ME-2019-003

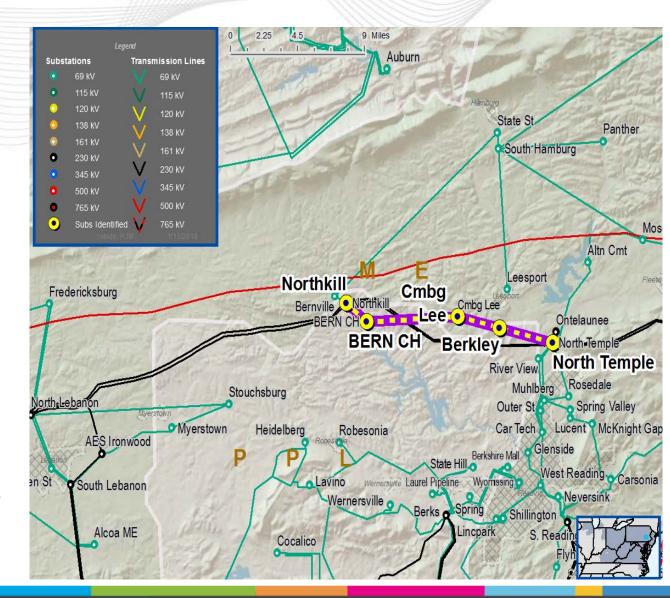
**Process Stage:** Need Meeting

Date: 02/22/2019

Project Driver(s):

Equipment Material Condition, Performance and Risk

Specific Assumption Reference(s)


Line Condition Rebuild/Replacement

- Age/condition of wood pole transmission line structures
- Age/condition of steel tower or steel pole transmission line structures
- Age/condition of transmission line conductors

System Performance Projects

Substation/line equipment limits

- Line sections are exhibiting deterioration, increasing maintenance needs.
   Transmission line is approaching end of life
- Transmission line ratings are limited by terminal equipment.





Need Number: ME-2019-005

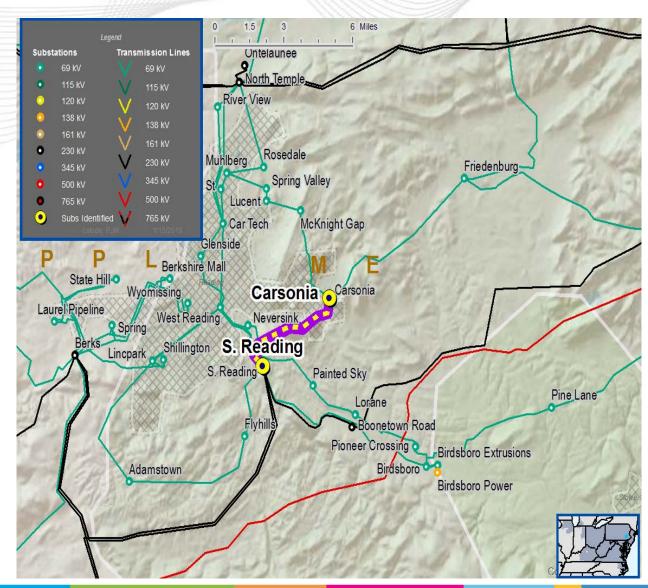
Process Stage: Need Meeting

Date: 02/22/2019

Project Driver(s):

Equipment Material Condition, Performance and Risk

Specific Assumption Reference(s)


Line Condition Rebuild/Replacement

- Age/condition of wood pole transmission line structures
- Age/condition of steel tower or steel pole transmission line structures
- Age/condition of transmission line conductors

System Performance Projects

Substation/line equipment limits

- Line sections are exhibiting deterioration, increasing maintenance needs. Transmission line is approaching end of life
- Transmission line ratings are limited by terminal equipment.





Need Number: ME-2019-006

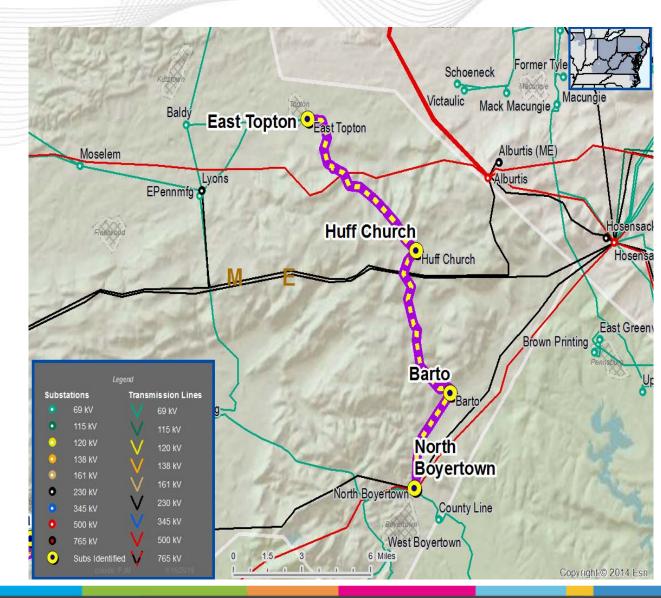
**Process Stage:** Need Meeting

Date: 02/22/2019

Project Driver(s):

Equipment Material Condition, Performance and Risk

Specific Assumption Reference(s)


Line Condition Rebuild/Replacement

- Age/condition of wood pole transmission line structures
- Age/condition of steel tower or steel pole transmission line structures
- Age/condition of transmission line conductors

System Performance Projects

Substation/line equipment limits

- Line sections are exhibiting deterioration, increasing maintenance needs.
   Transmission line is approaching end of life
- Transmission line ratings are limited by terminal equipment.





Need Number: ME-2019-007

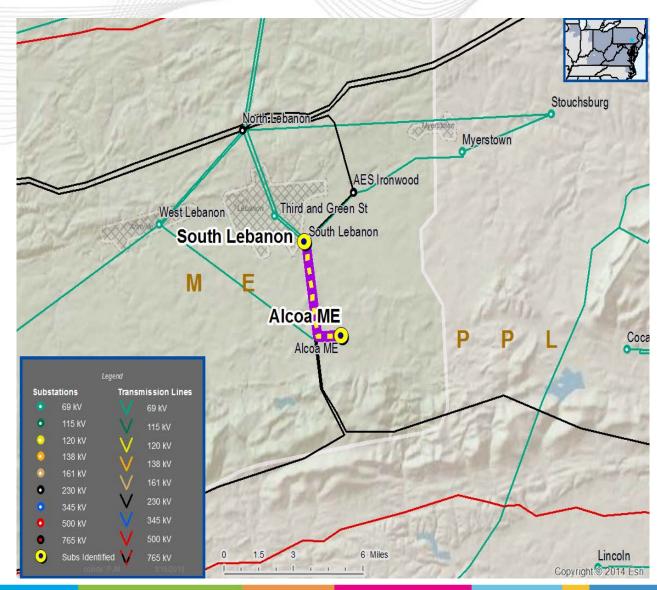
**Process Stage:** Need Meeting

Date: 02/22/2019

Project Driver(s):

Equipment Material Condition, Performance and Risk

Specific Assumption Reference(s)


Line Condition Rebuild/Replacement

- Age/condition of wood pole transmission line structures
- Age/condition of steel tower or steel pole transmission line structures
- Age/condition of transmission line conductors

System Performance Projects

Substation/line equipment limits

- Line sections are exhibiting deterioration, increasing maintenance needs.
   Transmission line is approaching end of life
- Transmission line ratings are limited by terminal equipment.





Need Number: ME-2019-008

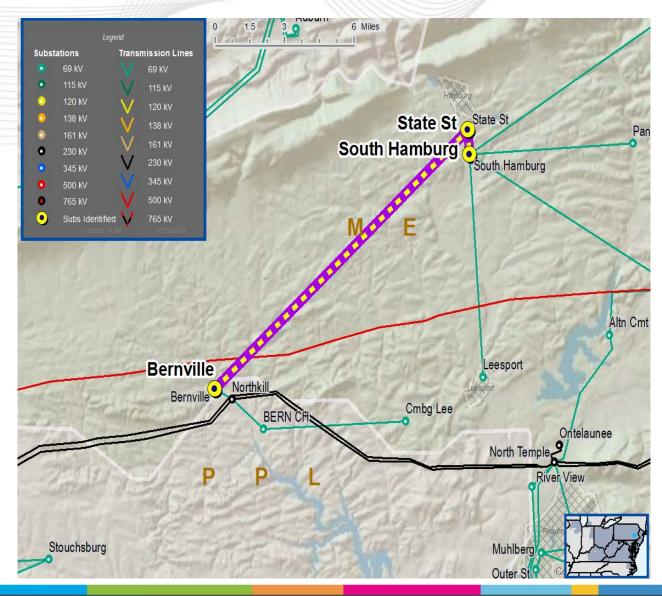
**Process Stage:** Need Meeting

Date: 02/22/2019

Project Driver(s):

Equipment Material Condition, Performance and Risk

Specific Assumption Reference(s)


Line Condition Rebuild/Replacement

- Age/condition of wood pole transmission line structures
- Age/condition of steel tower or steel pole transmission line structures
- Age/condition of transmission line conductors

System Performance Projects

Substation/line equipment limits

- Line sections are exhibiting deterioration, increasing maintenance needs.
   Transmission line is approaching end of life
- Transmission line ratings are limited by terminal equipment.





Need Number: ME-2019-009

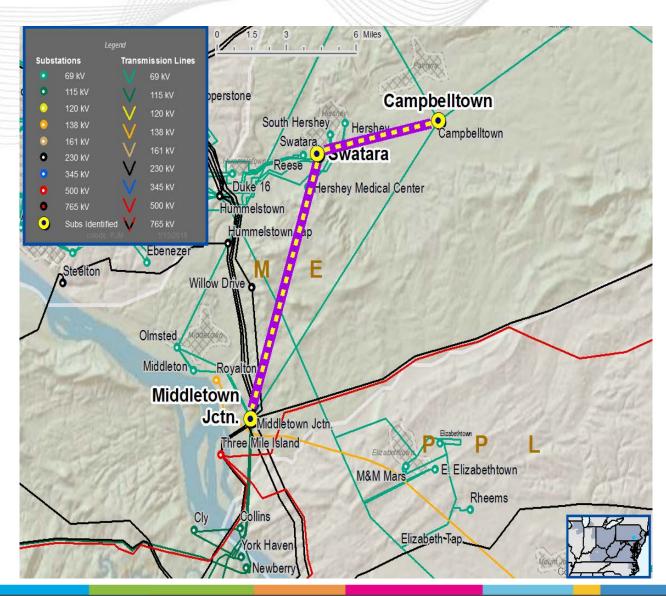
**Process Stage:** Need Meeting

Date: 02/22/2019

Project Driver(s):

Equipment Material Condition, Performance and Risk

Specific Assumption Reference(s)


Line Condition Rebuild/Replacement

- Age/condition of wood pole transmission line structures
- Age/condition of steel tower or steel pole transmission line structures
- Age/condition of transmission line conductors

System Performance Projects

Substation/line equipment limits

- Line sections are exhibiting deterioration, increasing maintenance needs. Transmission line is approaching end of life
- Transmission line ratings are limited by terminal equipment.





Need Number: ME-2019-010

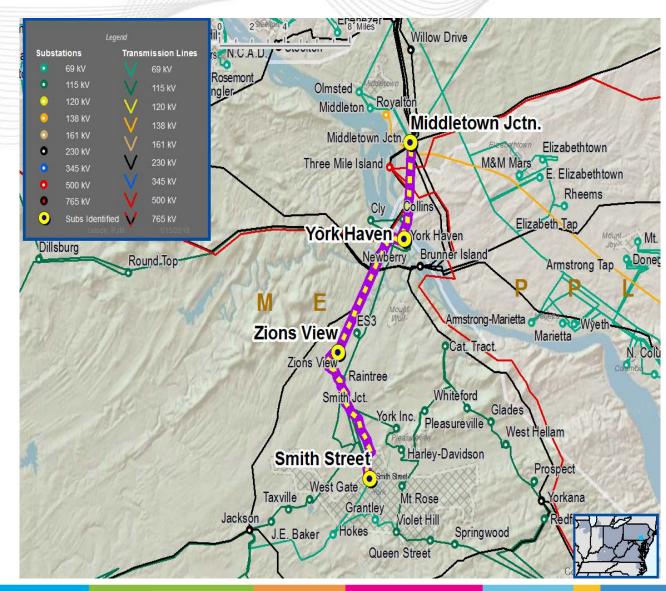
**Process Stage:** Need Meeting

Date: 02/22/2019

Project Driver(s):

Equipment Material Condition, Performance and Risk

Specific Assumption Reference(s)


Line Condition Rebuild/Replacement

- Age/condition of wood pole transmission line structures
- Age/condition of steel tower or steel pole transmission line structures
- Age/condition of transmission line conductors

System Performance Projects

■ Substation/line equipment limits

- Line sections are exhibiting deterioration, increasing maintenance needs.
   Transmission line is approaching end of life
- Transmission line ratings are limited by terminal equipment.





Need Number: ME-2019-011

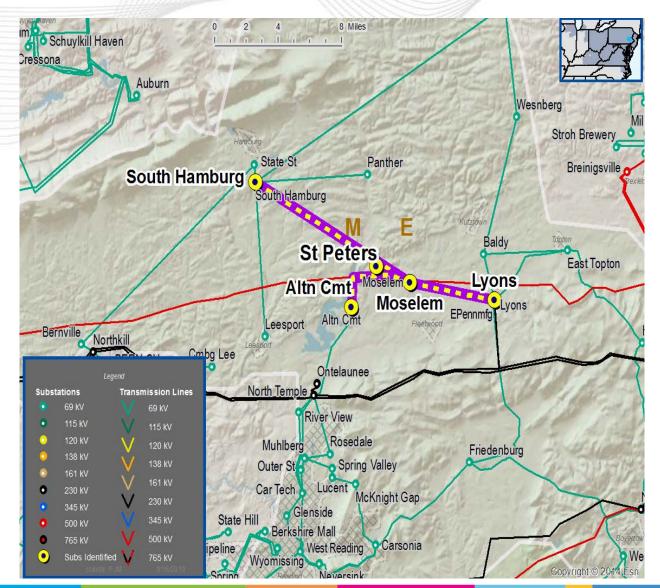
**Process Stage:** Need Meeting

Date: 02/22/2019

Project Driver(s):

Equipment Material Condition, Performance and Risk

Specific Assumption Reference(s)


Line Condition Rebuild/Replacement

- Age/condition of wood pole transmission line structures
- Age/condition of steel tower or steel pole transmission line structures
- Age/condition of transmission line conductors

System Performance Projects

Substation/line equipment limits

- Line sections are exhibiting deterioration, increasing maintenance needs.
   Transmission line is approaching end of life
- Transmission line ratings are limited by terminal equipment.





Need Number: ME-2019-012

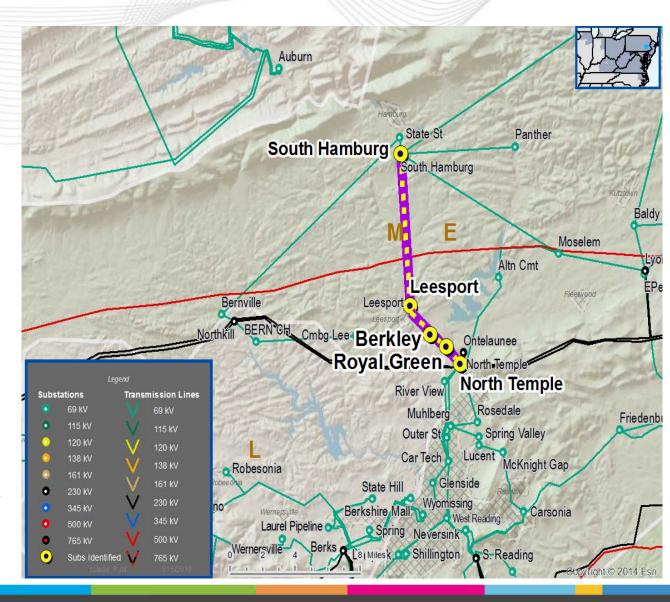
**Process Stage:** Need Meeting

Date: 02/22/2019

Project Driver(s):

Equipment Material Condition, Performance and Risk

Specific Assumption Reference(s)


Line Condition Rebuild/Replacement

- Age/condition of wood pole transmission line structures
- Age/condition of steel tower or steel pole transmission line structures
- Age/condition of transmission line conductors

System Performance Projects

Substation/line equipment limits

- Line sections are exhibiting deterioration, increasing maintenance needs. Transmission line is approaching end of life
- Transmission line ratings are limited by terminal equipment.





Need Number: ME-2019-013

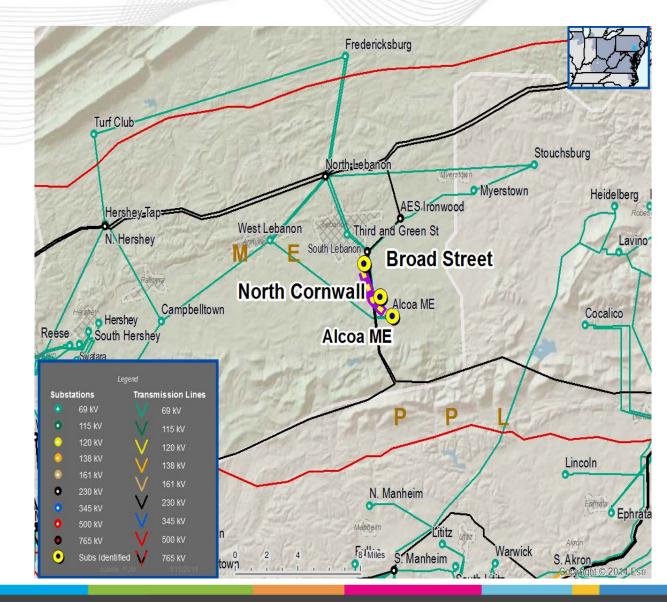
**Process Stage:** Need Meeting

Date: 02/22/2019

Project Driver(s):

Equipment Material Condition, Performance and Risk

Specific Assumption Reference(s)


Line Condition Rebuild/Replacement

- Age/condition of wood pole transmission line structures
- Age/condition of steel tower or steel pole transmission line structures
- Age/condition of transmission line conductors

System Performance Projects

■ Substation/line equipment limits

- Line sections are exhibiting deterioration, increasing maintenance needs.
   Transmission line is approaching end of life
- Transmission line ratings are limited by terminal equipment.





Need Number: ME-2019-014

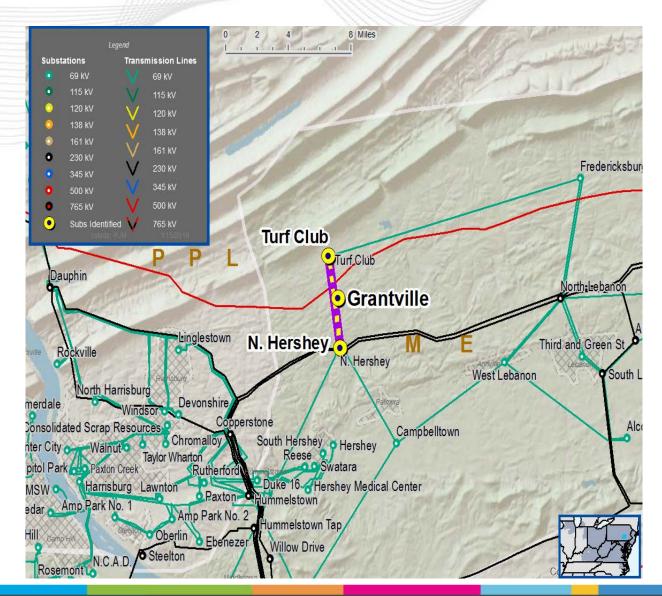
Process Stage: Need Meeting

Date: 02/22/2019

Project Driver(s):

Equipment Material Condition, Performance and Risk

Specific Assumption Reference(s)


Line Condition Rebuild/Replacement

- Age/condition of wood pole transmission line structures
- Age/condition of steel tower or steel pole transmission line structures
- Age/condition of transmission line conductors

System Performance Projects

■ Substation/line equipment limits

- Line sections are exhibiting deterioration, increasing maintenance needs.
   Transmission line is approaching end of life
- Transmission line ratings are limited by terminal equipment.

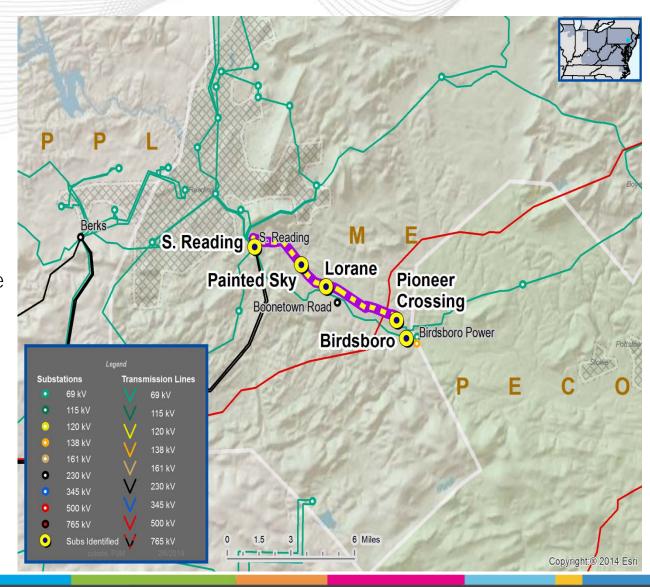




Need Number: ME-2019-015

Process Stage: Need Meeting

Date: 2/22/2019


# Project Driver(s):

Equipment Material Condition, Performance and Risk

# Specific Assumption Reference(s)

- Line Condition Rebuild/Replacement Age/condition of transmission line conductors, wood pole transmission line structures
- System Performance Projects Substation/Line Equipment Limits
- Reconductor/Rebuild Transmission Lines Transmission lines with high loading

Continued on next slide...





Continued from previous slide...

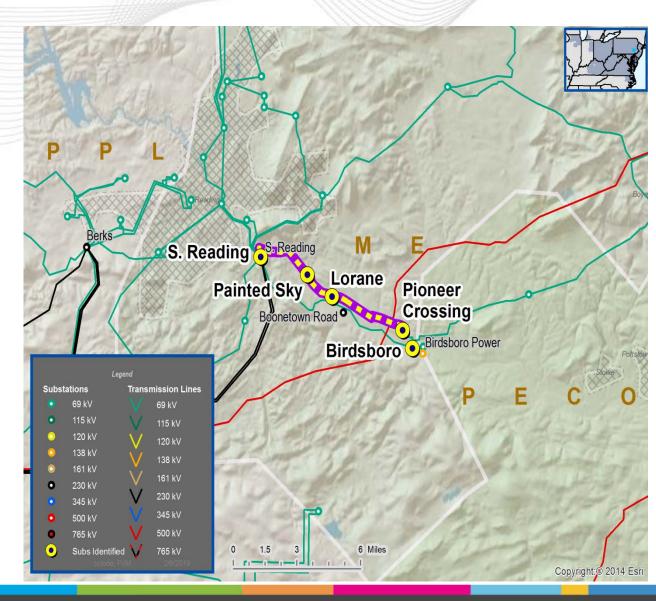
#### **Problem Statement**

The South Reading-Painted Sky-Lorane-Pioneer Crossing-Birdsboro 69 kV line is exhibiting deterioration resulting in increased maintenance. The Transmission line is approaching end of life

- 28 out of 125 structures failed inspection (22% Failure Rate).
- Failure reasons include bad/cut/missing grounds, static bayonet, broken guy, woodpecker damage, etc.
- Total line distance is approximately 7.5 miles.

Thermal loading on the Lorane-Pioneer Crossing 69 kV section is ~115% of the SE rating for loss of the N. Boyertown 230-69 kV transformer & S. Reading-Birdsboro 828 69 kV line.

(2018 RTEP Model – 2023 Summer)


Transmission line rating is limited by terminal equipment.

South Reading-Painted Sky 69 kV line: (substation conductor)

- Existing line rating is 88 / 114 MVA (SN / SE).
- Existing conductor rating is 139 / 169 MVA (SN / SE).

Painted Sky-Lorane 69 kV line: (substation conductor)

- Existing line rating is 137 / 169 MVA (SN / SE).
- Existing conductor rating is 139 / 169 MVA (SN / SE).





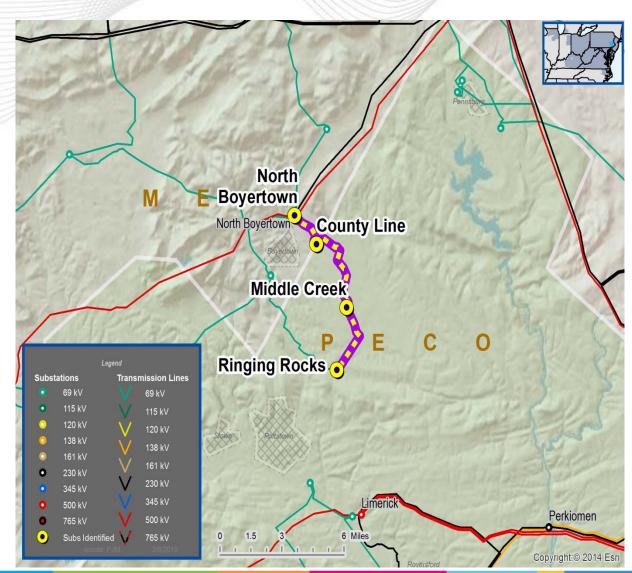
Need Number: ME-2019-016
Process Stage: Need Meeting

Date: 2/22/2019 Project Driver(s):

Equipment Material Condition, Performance and Risk

Specific Assumption Reference(s)

■ Line Condition Rebuild/Replacement – Age/condition of transmission line conductors, wood pole transmission line structures, and steel pole transmission line structures


System Performance Projects – Substation/Line Equipment Limits

Reconductor/Rebuild Transmission Lines – Transmission lines with high loading

#### **Problem Statement**

The N. Boyertown-Cabot-County Line-Middle Creek-Ringing Rocks 69 kV line is exhibiting deterioration resulting in increased maintenance. The Transmission line is approaching end of life

- 41 out of 147 structures failed inspection (28% Failure Rate).
- Failure reasons include split top, cracking, etc.
- Total line distance is approximately 7.7 miles.
- Continued on next slide...





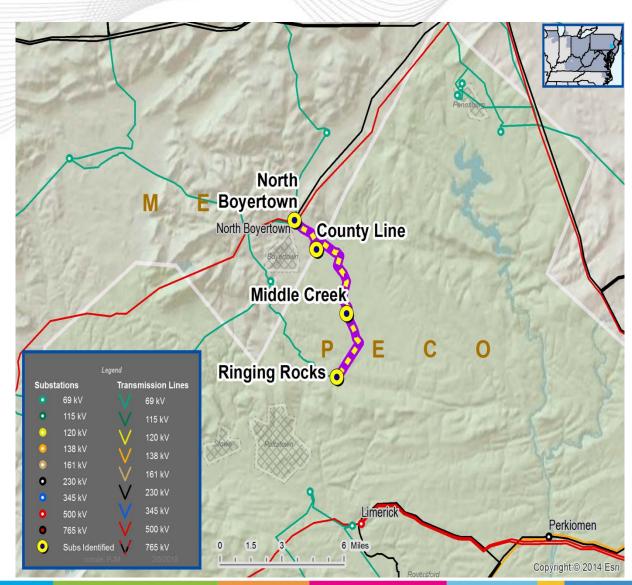
Continued from previous slide...

Thermal loading on North Boyertown-Cabot 69 kV section and Cabot-County Line 69 kV sections are loaded to approximately 112% and 100% of their SE ratings respectively for loss of the North Boyertown-West Boyertown 69 kV line & Birdsboro-West Boyertown 69 kV line.

(2018 RTEP Model – 2023 Summer)

Transmission line rating is limited by terminal equipment.

North Boyertown – Cabot Tap 69 kV line: (relay and substation conductor)


- Existing line rating is 62 / 72 MVA (SN / SE).
- Existing conductor rating is 72 / 72 MVA (SN / SE).

County Line – Middle Creek 69 kV line: (substation conductor)

- Existing line rating is 132 / 158 MVA (SN / SE).
- Existing conductor rating is 139 / 169 MVA (SN / SE).

Middle Creek – Ringing Rocks 69 kV line: (relay, disconnect switch)

- Existing line rating is 62 / 62 MVA (SN / SE).
- Existing conductor rating is 99 / 99 MVA (SN / SE).





Need Number: ME-2019-017
Process Stage: Need Meeting

Date: 2/22/2019 Project Driver(s):

Equipment Material Condition, Performance and Risk

## Specific Assumption Reference(s)

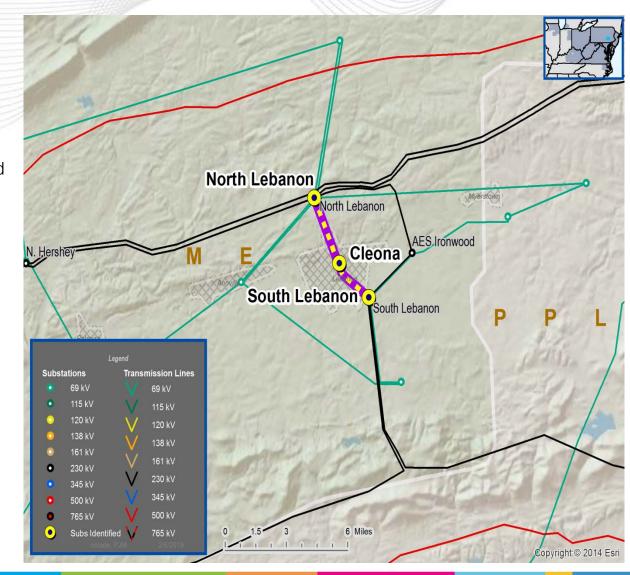
- Line Condition Rebuild/Replacement Age/condition of transmission line conductors, wood pole transmission line structures
- System Performance Projects Substation/Line Equipment Limits
- Reconductor/Rebuild Transmission Lines Transmission lines with high loading

#### **Problem Statement**

The N. Lebanon-Cleona-W. Lebanon 69 kV line is exhibiting deterioration resulting in increased maintenance. The Transmission line is approaching end of life

- 58 out of 73 structures failed inspection (79% Failure Rate).
- Failure reasons include top rot, voids, woodpecker holes, etc.
- Total line distance is approximately 7.1 miles.

Thermal loading on Cleona-West Lebanon 69 kV section is approximately 98% of the SE rating for loss of the South Lebanon 230-69 kV #1 & #2 transformers.


(2018 RTEP Model – 2023 Summer)

Transmission line rating is limited by terminal equipment.

North Lebanon - Cleona 69 kV line: (relay and disconnect switches)

- Existing line rating is 78 / 82 MVA (SN / SE).
- Existing conductor rating is 105 / 125 MVA (SN / SE).

# Met-Ed Transmission Zone





Need Number: ME-2019-018
Process Stage: Need Meeting

Date: 2/22/2019 Project Driver(s):

Equipment Material Condition, Performance and Risk

Operational Flexibility and Efficiency

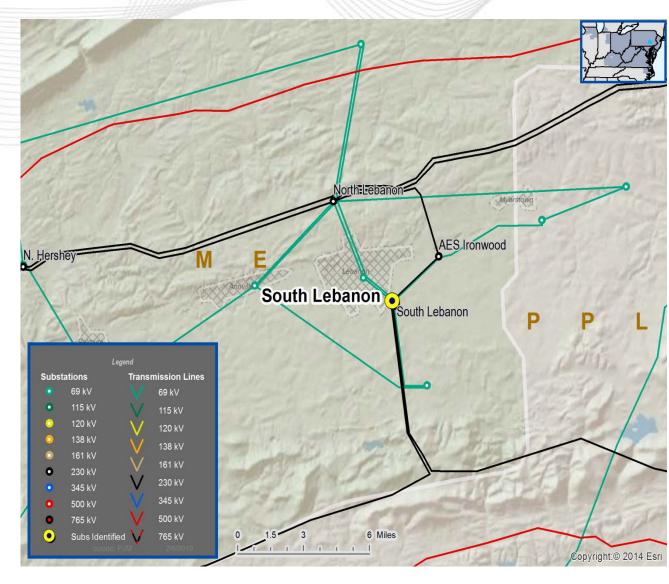
## Specific Assumption Reference(s)

Substation Condition Rebuild/Replacement

■ Add/Expand Bus Configuration

- Eliminate simultaneous outages to multiple networked elements for stuck breakers, bus outages, N-2 events, etc...

#### **Problem Statement**


South Lebanon #1 230-69 kV:

- Transformer is 49 years old
- Experiencing dissolved gasses in oil
- Analysis shows breaking down of paper insulation
- Approximately \$72,000 spent on maintenance orders since 2004

South Lebanon #2 230-69 kV:

- Transformer is 50 years old and at end of life
- History of oil leaks
- Analysis shows breaking down of paper insulation
- Broken fans and deteriorating bushings
- Tank temp has to be read with a thermal gun
- Approximately \$32,000 spent on maintenance orders since 2004

# Met-Ed Transmission Zone





Need Number: ME-2019-019

**Process Stage:** Need Meeting

Date: 2/22/2019 Project Driver(s):

Equipment Material Condition, Performance and Risk

Operational Flexibility and Efficiency

Specific Assumption Reference(s)

System Performance Projects Global Factors

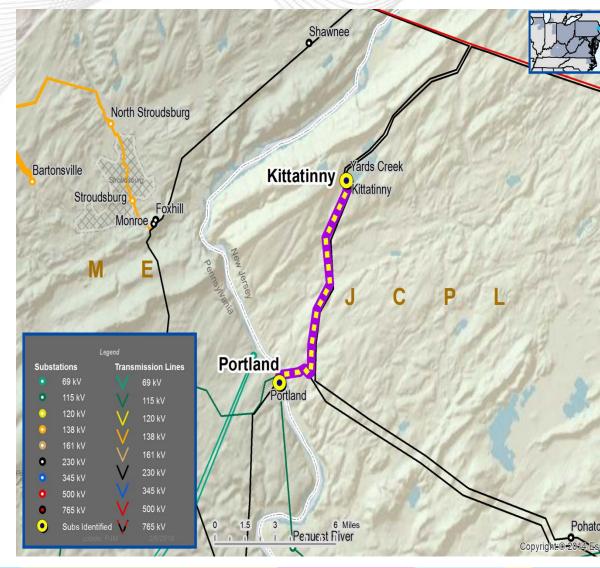
- System reliability and performance
- Substation/line equipment limits

Upgrade Relay Schemes

- Relay schemes that have a history of misoperation
- Obsolete and difficult to repair communication equipment (DTT, Blocking, etc.)
- Communication technology upgrades
- Bus protection schemes

#### **Problem Statement**

Relays on Kittatinny – Portland 230 kV line have been identified as protection schemes using a certain vintage of relays and communication equipment that have a history of misoperation. Proper operation of the protection scheme requires all the separate components perform adequately during a fault.


■ Kittatinny – Portland 230 kV line:

Existing line rating: 1114 / 1195 MVA (SN / SE).

Existing conductor rating: 1114 / 1285 MVA (SN / SE).

(relaying)

# Met-Ed Transmission Zone





Need Number: ME-2019-020

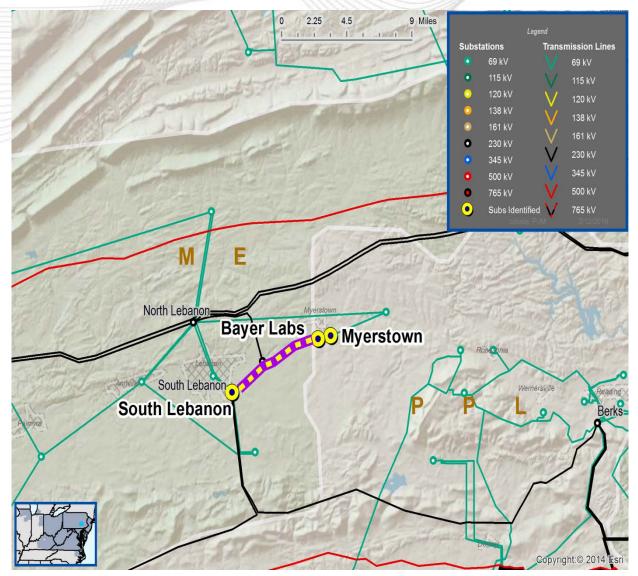
Process Stage: Need Meeting

Date: 02/22/2019

Project Driver(s):

Equipment Material Condition, Performance and Risk

Specific Assumption Reference(s)


Line Condition Rebuild/Replacement

- Age/condition of wood pole transmission line structures
- Age/condition of steel tower or steel pole transmission line structures
- Age/condition of transmission line conductors

System Performance Projects

Substation/line equipment limits

- Line sections are exhibiting deterioration, increasing maintenance needs. Transmission line is approaching end of life
- Transmission line ratings are limited by terminal equipment.





Need Number: ME-2019-021 Process Stage: Need Meeting

Date: 2/22/2019 Project Driver(s):

Equipment Material Condition, Performance and Risk

#### Specific Assumption Reference(s)

- Line Condition Rebuild/Replacement Age/condition of transmission line conductors, wood pole transmission line structures, and steel pole transmission line structures
- System Performance Projects Substation/Line Equipment Limits
- Reconductor/Rebuild Transmission Lines Transmission lines with high loading

#### **Problem Statement**

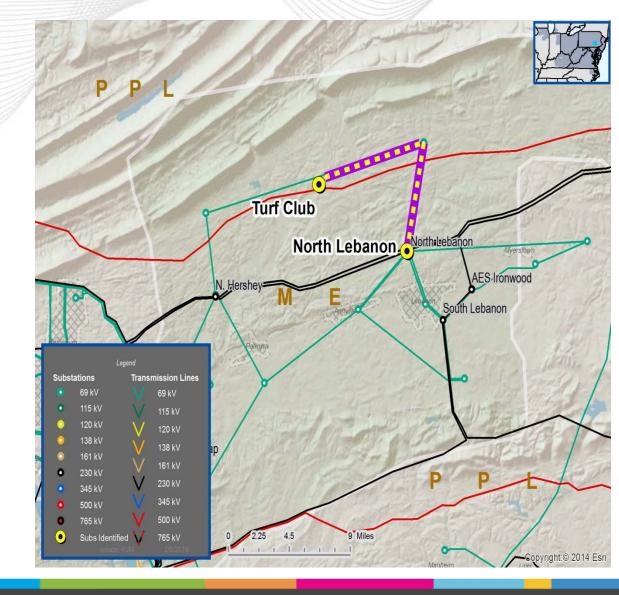
The North Lebanon – Turf Club 69 kV line is exhibiting deterioration resulting in increased maintenance. The Transmission line is approaching end of life

- 236 out of 360 structures failed inspection. (66% Failure Rate)
- Failure reasons include decay, woodpecker holes, cracking, bad/cut/missing ground wires, etc.
- Total line distance is approximately 7.7 miles.

Thermal loading on Turf Club – Indiantown Gap 69 kV and Indiantown Gap – Lickdale 69 kV line sections are approximately 97% and 86% of their SE ratings respectively for loss of North Lebanon – Fredericksburg 69 kV line section.

(2018 RTEP Model – 2023 Summer)

Transmission line ratings limited by terminal equipment.


North Lebanon – Fredericksburg 69 kV line:

Existing line rating: 82 / 103 MVA (SN / SE).

Existing conductor rating is 139 / 169 MVA (SN / SE).

(disconnect switches)

### Met-Ed Transmission Zone





Need Number: ME-2019-022
Process Stage: Need Meeting

Date: 2/22/2019

#### Project Driver(s):

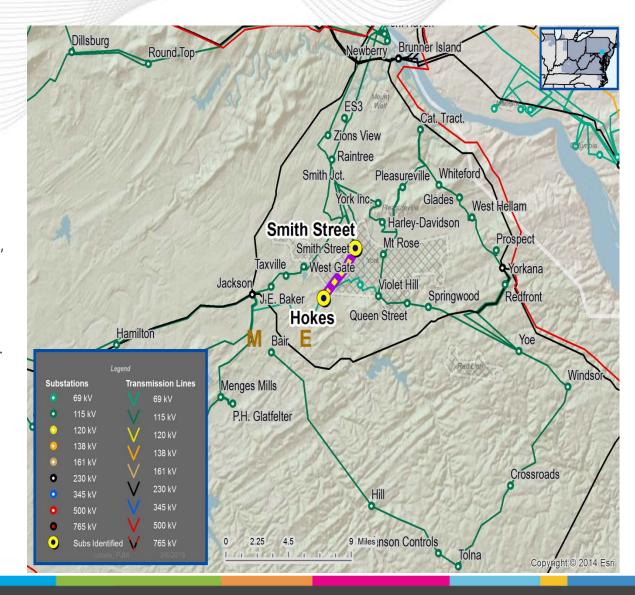
Equipment Material Condition, Performance and Risk

#### Specific Assumption Reference(s)

- Line Condition Rebuild/Replacement Age/condition of transmission line conductors, wood pole transmission line structures
- Reconductor/Rebuild Transmission Lines Transmission lines with high loading

#### **Problem Statement**

The Hokes – Smith St 69 kV is exhibiting deterioration resulting in increased maintenance. The Transmission line is approaching end of life.


- 83 out of 122 structures failed inspection. (68% Failure Rate)
- Failure reasons include contamination, sound, bad/cut/missing ground wires, etc.
- Total line distance is approximately 5.4 miles.

Thermal loading on Hokes-Smith Street 69 kV line is loaded to approximately 158% of the SE rating for loss of the Jackson-Hokes 69 kV line & the Violet Hill 69 kV transformer.

(2018 RTEP Model – 2023 Summer)

Transmission line rating is currently limited by the conductor: 43 / 44 MVA (SN / SE).

### Met-Ed Transmission Zone





Need Number: PN-2019-001 Process Stage: Need Meeting

Date: 02/22/2019

#### Project Driver(s):

Equipment Material Condition, Performance and Risk

Specific Assumption Reference(s)

Substation Condition Rebuild/Replacement

Power transformers and load tap changers (LTCs)

System Performance Projects Global Factors

Substation/line equipment limits

#### **Problem Statement**

East Towanda #4 230/115 kV Transformer

- Transformer has an increased failure probability due to type "U" bushings, dielectric breakdown, and is exhibiting high ethylene gas.
- Transformer is 45 years old.
- Approximately \$64,000 spent on maintenance orders since 2003.

Transformer circuit rating is limited by terminal equipment.

Existing transformer circuit rating is 190 / 226 MVA (SN / SE).

Existing transformer rating is 195 / 244 MVA (SN / SE).

(substation conductor)



pim

Need Number: PN-2019-002

Process Stage: Need Meeting

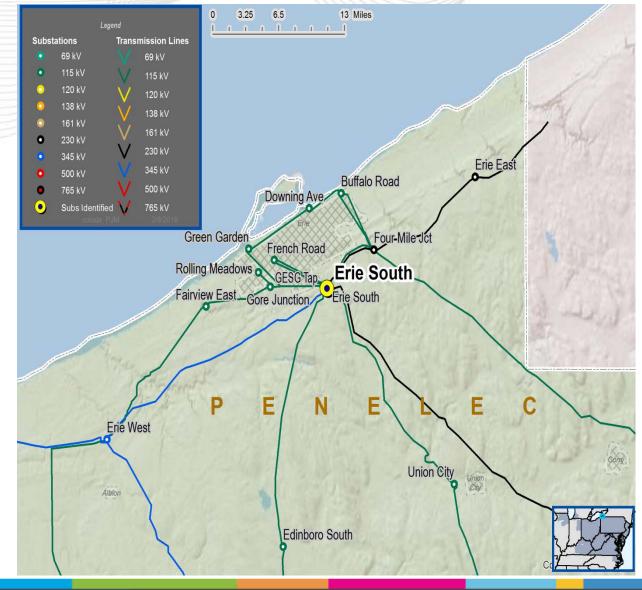
Date: 02/22/2019

#### Project Driver(s):

Equipment Material Condition, Performance and Risk

Specific Assumption Reference(s)

Substation Condition Rebuild/Replacement


Power transformers and load tap changers (LTCs)

#### **Problem Statement**

Erie South #6 230/115 kV Transformer

- Transformer has an increased failure probability due to type "U" bushings, nitrogen leaks, and is exhibiting an increase in ethylene gas. Power factor test results show deterioration of insulation.
- Transformer is 41 years old.
- Approximately \$821,000 spent on maintenance orders since 2003.

Transformer circuit rating is the existing transformer rating of 262/326 MVA (SN / SE).





Process Stage: Need Meeting

Date: 02/22/2019

#### Project Driver(s):

Equipment Material Condition, Performance and Risk

Specific Assumption Reference(s)

Substation Condition Rebuild/Replacement

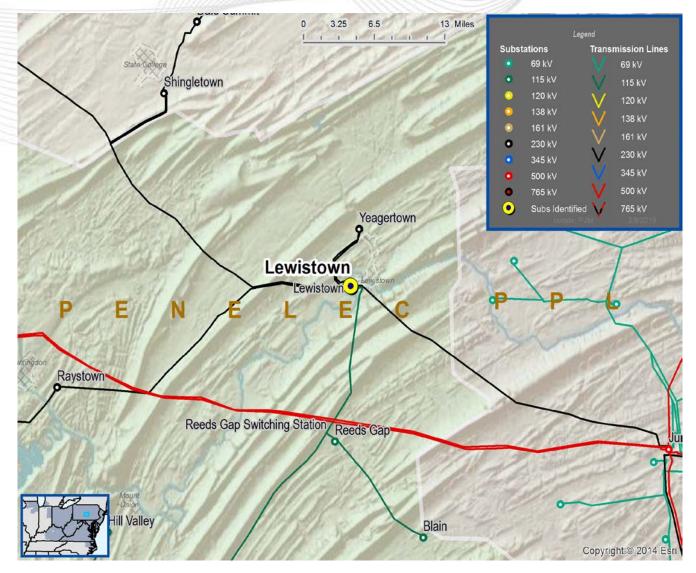
Power transformers and load tap changers (LTCs)

System Performance Projects Global Factors

Substation/line equipment limits

#### **Problem Statement**

Lewistown #1 230/115-46 kV Transformer


- Transformer has an increased failure probability due to high levels of combustible and ethylene gases and decrease in dielectric strength.
- Transformer is 66 years old.
- Approximately \$137,000 spent on maintenance orders since 2003.

Transformer circuit rating is limited by terminal equipment on 46 kV winding.

Existing transformer circuit rating is 55 / 67 MVA (SN / SE).

Existing transformer rating is 62 / 67 MVA (SN / SE).

(disconnect switches, transformer relaying)





Need Number: PN-2019-004
Process Stage: Need Meeting

Date: 02/22/2019 Project Driver(s):

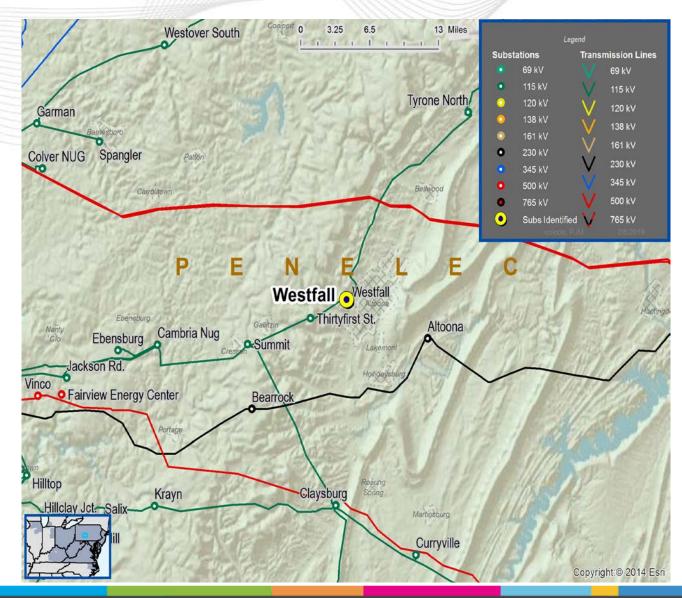
Equipment Material Condition, Performance and Risk

#### Specific Assumption Reference(s)

Substation Condition Rebuild/Replacement

Power transformers and load tap changers (LTCs)

#### **Problem Statement**


Westfall #3 115/46 kV Transformer

- Power factor test results show deterioration of windings and bushings.
- Transformer is 47 years old.
- Approximately \$79,000 spent on maintenance orders since 2004.

Transformer circuit rating is the existing transformer rating of 38 / 41 MVA (SN / SE). Westfall #4 115/46 kV Transformer

- Power factor test results show deterioration of type "U" bushings.
- Transformer is 50 years old.
- Approximately \$18,000 spent on maintenance orders since 2003.

Transformer circuit rating is the existing transformer rating of 31 / 34 MVA (SN / SE).





Need Number: PN-2019-005 Process Stage: Need Meeting

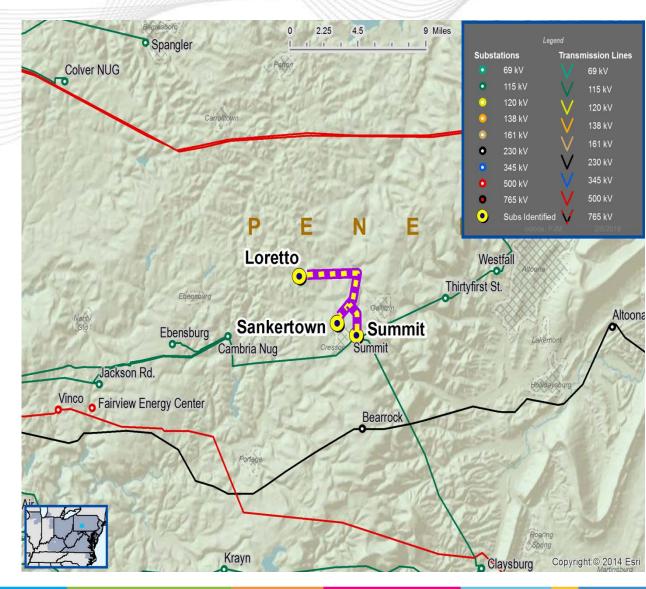
Date: 02/22/2019

#### Project Driver(s):

Equipment Material Condition, Performance and Risk

#### Specific Assumption Reference(s)

Line Condition Rebuild/Replacement


Age/condition of wood pole transmission line structures

#### **Problem Statement**

The Loretto – Sankertown Bypass – Summit 46 kV line is exhibiting deterioration resulting in increased maintenance. The transmission line is approaching end of life.

- Total line distance is approximately 5.7 miles
  - 79 wood structures and 2 towers
  - Average age of failed structures is 51 years
- 81 out of 122 structures failed inspection (66% failure rate)
- Failure reasons include sound test, bad/cut/missing grounds, bayonet for static, woodpecker damage, etc.

Transmission line rating is the existing conductor rating 32 / 32 MVA (SN / SE).





Need Number: PN-2019-006 Process Stage: Need Meeting

Date: 02/22/2019 Project Driver(s):

Equipment Material Condition, Performance and Risk

Specific Assumption Reference(s)

Substation Condition Rebuild/Replacement Global Factors

 Limited availability of spare parts, software obsolescence and/or compatibility, or vendor technical support

Expected service life (at or beyond) or obsolescence

Substation Condition Rebuild/Replacement – Asset Types

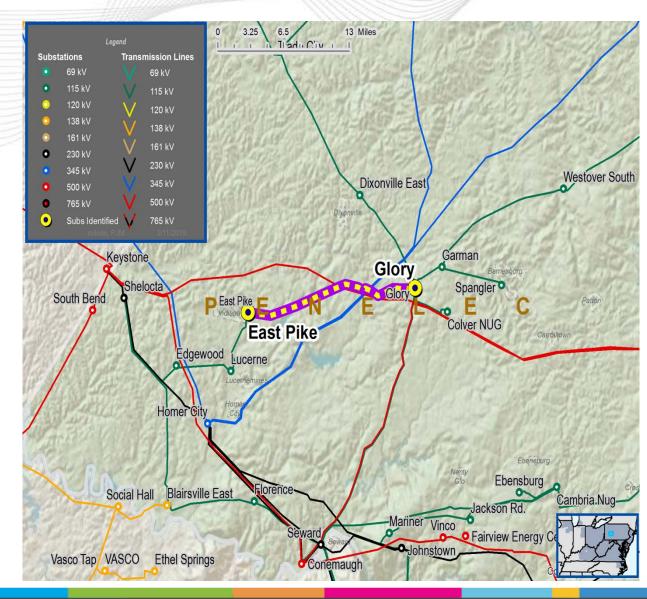
 Circuit breakers and other fault interrupting devices, switches, carrier sets and associated wave-traps, line arresters

System Performance Projects Global Factors

Substation/line equipment limits

#### **Problem Statement**

East Pike – Glory 115 kV Line – Terminal equipment is exhibiting an increase risk of failure and due to obsolescence of equipment, spare parts are limited.


- At East Pike 115 kV substation bus section breaker disconnect switches, CVTs, line trap, and surge arresters
- At Glory 115 kV substation line side breaker disconnect switches

Transmission line rating is limited by terminal equipment.

Existing line rating is 163 / 185 MVA (SN / SE).

Existing conductor rating is 202 / 245 MVA (SN / SE).

(line trap, substation conductor, CTs)





### Penelec Transmission Zone

**Need Number:** PN-2019-007 to 012

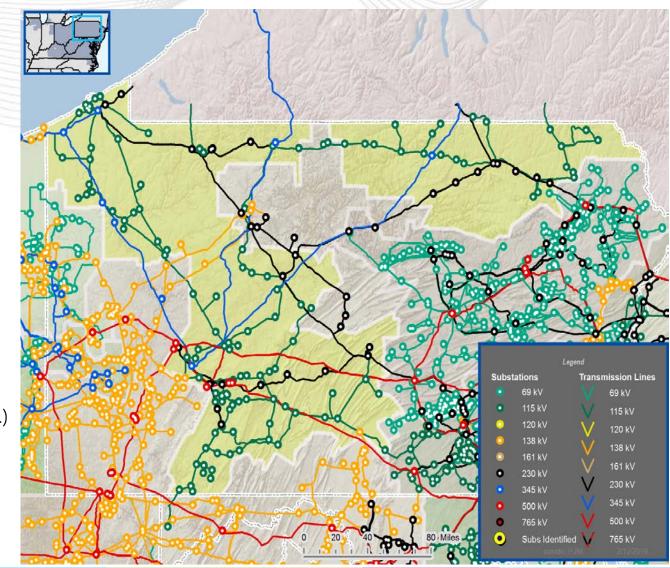
Process Stage: Need Meeting

Date: 02/22/2019

#### Project Driver(s):

Equipment Material Condition, Performance and Risk Operational Flexibility and Efficiency

#### Specific Assumption Reference(s)


System Performance Projects Global Factors

- System reliability and performance
- Substation/line equipment limits

#### Upgrade Relay Schemes

- Relay schemes that have a history of misoperation
- Obsolete and difficult to repair communication equipment (DTT, Blocking, etc.)
- Communication technology upgrades
- Bus protection schemes

Continued on next slide...





#### **Problem Statement**

- FirstEnergy has identified protection schemes using a certain vintage of relays and communication equipment that have a history of misoperation.
- Proper operation of the protection scheme requires all the separate components perform adequately during a fault.
- In many cases the protection equipment cannot be repaired due to a lack of replacement parts and available expertise in the outdated technology.
- Transmission line ratings are limited by terminal equipment.
- ¹Line has failed carrier equipment that cannot be repaired or replaced

| PN-2019-         | Transmission Line / Substation Locations | Existing Line<br>Rating<br>(SN / SE) | Existing<br>Conductor Rating<br>(SN / SE) | Limiting Terminal Equipment                                                |
|------------------|------------------------------------------|--------------------------------------|-------------------------------------------|----------------------------------------------------------------------------|
| 007              | Lenox – North Meshoppen 115 kV Line      | 136 / 189                            | 167 / 202                                 | Line Relaying, Substation Conductor / Drops, Line Trap                     |
| 008              | Ridgway – Whetstone 115 kV Line          | 193 / 239                            | 202 / 245                                 | Line Relaying                                                              |
| 009 <sup>1</sup> | Union City – Titusville 115 kV Line      | 120 / 120                            | 202 / 245                                 | Line Relaying, Substation Conductor, Line Trap                             |
| 010 <sup>1</sup> | Grandview - Titusville 115 kV Line       | 147 / 149                            | 202 / 245                                 | Line Relaying, Substation Conductor, Line Trap                             |
| 011              | Cooper – Seward 115 kV Line              | 222 / 277                            | 273 / 333                                 | Line Relaying, Substation Conductor / Drops, Line Trap,<br>Circuit Breaker |
| 012              | Erie South – Union City 115 kV Line      | 176 / 224                            | 232 / 282                                 | Line Relaying, Substation Conductor / Drops                                |



Process Stage: Need Meeting

Date: 02/22/2019

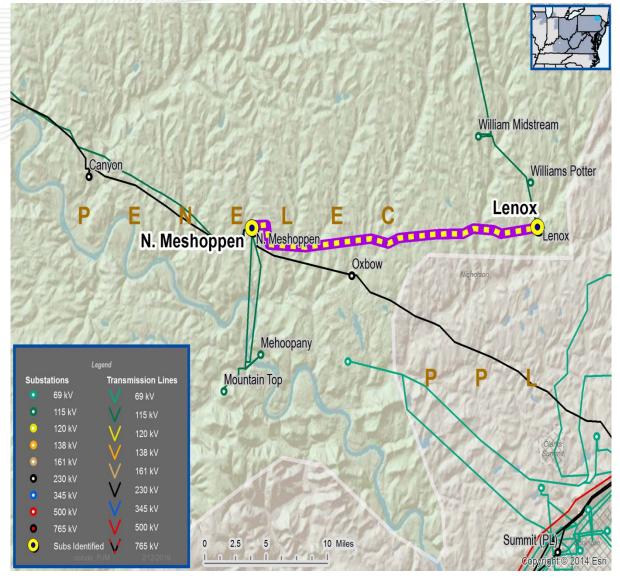
Project Driver(s):

Equipment Material Condition, Performance and Risk

Operational Flexibility and Efficiency

Specific Assumption Reference(s)

System Performance Projects Global Factors


- System reliability and performance
- Substation/line equipment limits

**Upgrade Relay Schemes** 

- Relay schemes that have a history of misoperation
- Obsolete and difficult to repair communication equipment (DTT, Blocking, etc.)
- Communication technology upgrades
- Bus protection schemes

#### **Problem Statement**

- FirstEnergy has identified protection schemes using a certain vintage of relays and communication equipment that have a history of misoperation.
- Proper operation of the protection scheme requires all the separate components perform adequately during a fault.
- In many cases the protection equipment cannot be repaired due to a lack of replacement parts and available expertise in the outdated technology.
- Transmission line ratings are limited by terminal equipment.
- ¹Line has failed carrier equipment that cannot be repaired or replaced





Process Stage: Need Meeting

Date: 02/22/2019

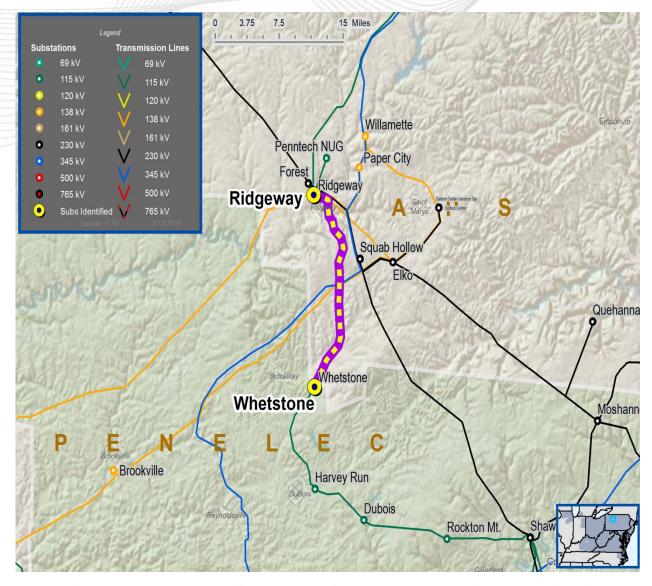
Project Driver(s):

Equipment Material Condition, Performance and Risk

Operational Flexibility and Efficiency

Specific Assumption Reference(s)

System Performance Projects Global Factors


- System reliability and performance
- Substation/line equipment limits

**Upgrade Relay Schemes** 

- Relay schemes that have a history of misoperation
- Obsolete and difficult to repair communication equipment (DTT, Blocking, etc.)
- Communication technology upgrades
- Bus protection schemes

#### **Problem Statement**

- FirstEnergy has identified protection schemes using a certain vintage of relays and communication equipment that have a history of misoperation.
- Proper operation of the protection scheme requires all the separate components perform adequately during a fault.
- In many cases the protection equipment cannot be repaired due to a lack of replacement parts and available expertise in the outdated technology.
- Transmission line ratings are limited by terminal equipment.
- ¹Line has failed carrier equipment that cannot be repaired or replaced



# pjm

Need Number: PN-2019-009

Process Stage: Need Meeting

Date: 02/22/2019

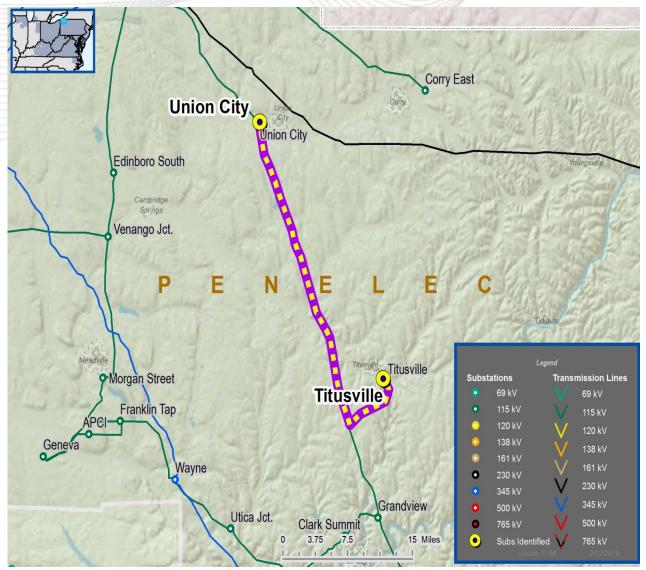
Project Driver(s):

Equipment Material Condition, Performance and Risk

Operational Flexibility and Efficiency

Specific Assumption Reference(s)

System Performance Projects Global Factors


- System reliability and performance
- Substation/line equipment limits

**Upgrade Relay Schemes** 

- Relay schemes that have a history of misoperation
- Obsolete and difficult to repair communication equipment (DTT, Blocking, etc.)
- Communication technology upgrades
- Bus protection schemes

#### **Problem Statement**

- FirstEnergy has identified protection schemes using a certain vintage of relays and communication equipment that have a history of misoperation.
- Proper operation of the protection scheme requires all the separate components perform adequately during a fault.
- In many cases the protection equipment cannot be repaired due to a lack of replacement parts and available expertise in the outdated technology.
- Transmission line ratings are limited by terminal equipment.
- ¹Line has failed carrier equipment that cannot be repaired or replaced



# **a** pim

Need Number: PN-2019-010

Process Stage: Need Meeting

Date: 02/22/2019

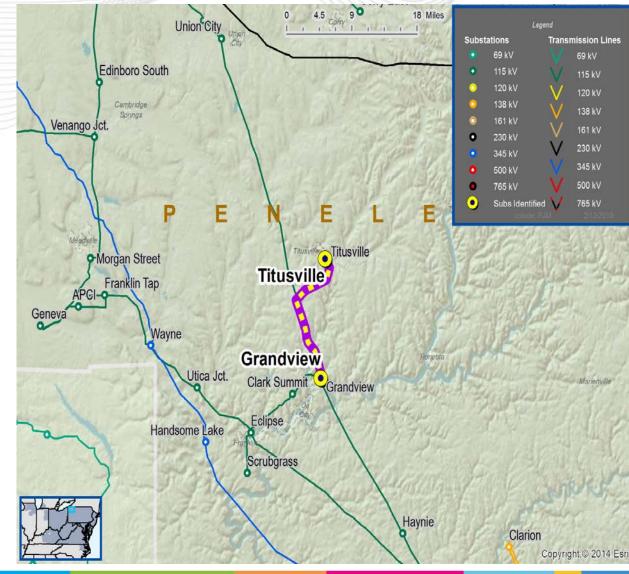
Project Driver(s):

Equipment Material Condition, Performance and Risk

Operational Flexibility and Efficiency

Specific Assumption Reference(s)

System Performance Projects Global Factors


- System reliability and performance
- Substation/line equipment limits

**Upgrade Relay Schemes** 

- Relay schemes that have a history of misoperation
- Obsolete and difficult to repair communication equipment (DTT, Blocking, etc.)
- Communication technology upgrades
- Bus protection schemes

#### **Problem Statement**

- FirstEnergy has identified protection schemes using a certain vintage of relays and communication equipment that have a history of misoperation.
- Proper operation of the protection scheme requires all the separate components perform adequately during a fault.
- In many cases the protection equipment cannot be repaired due to a lack of replacement parts and available expertise in the outdated technology.
- Transmission line ratings are limited by terminal equipment.
- ¹Line has failed carrier equipment that cannot be repaired or replaced





Process Stage: Need Meeting

Date: 02/22/2019

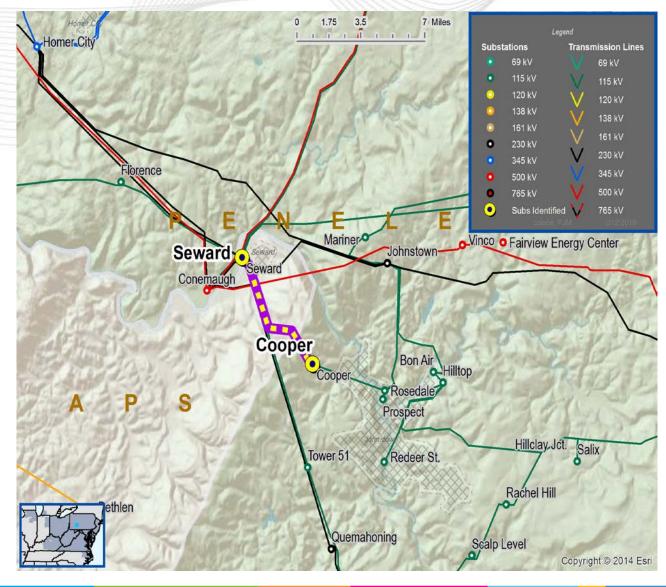
Project Driver(s):

Equipment Material Condition, Performance and Risk

Operational Flexibility and Efficiency

Specific Assumption Reference(s)

System Performance Projects Global Factors


- System reliability and performance
- Substation/line equipment limits

**Upgrade Relay Schemes** 

- Relay schemes that have a history of misoperation
- Obsolete and difficult to repair communication equipment (DTT, Blocking, etc.)
- Communication technology upgrades
- Bus protection schemes

#### **Problem Statement**

- FirstEnergy has identified protection schemes using a certain vintage of relays and communication equipment that have a history of misoperation.
- Proper operation of the protection scheme requires all the separate components perform adequately during a fault.
- In many cases the protection equipment cannot be repaired due to a lack of replacement parts and available expertise in the outdated technology.
- Transmission line ratings are limited by terminal equipment.
- ¹Line has failed carrier equipment that cannot be repaired or replaced





Process Stage: Need Meeting

Date: 02/22/2019

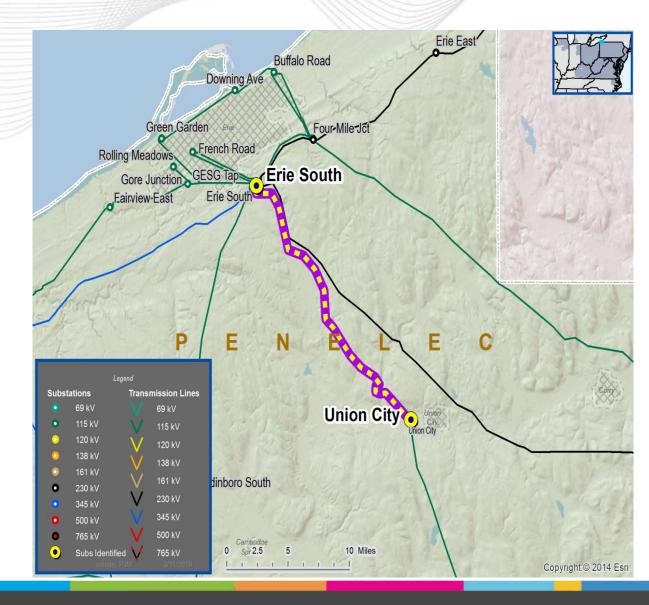
Project Driver(s):

Equipment Material Condition, Performance and Risk

Operational Flexibility and Efficiency

Specific Assumption Reference(s)

System Performance Projects Global Factors


- System reliability and performance
- Substation/line equipment limits

**Upgrade Relay Schemes** 

- Relay schemes that have a history of misoperation
- Obsolete and difficult to repair communication equipment (DTT, Blocking, etc.)
- Communication technology upgrades
- Bus protection schemes

#### **Problem Statement**

- FirstEnergy has identified protection schemes using a certain vintage of relays and communication equipment that have a history of misoperation.
- Proper operation of the protection scheme requires all the separate components perform adequately during a fault.
- In many cases the protection equipment cannot be repaired due to a lack of replacement parts and available expertise in the outdated technology.
- Transmission line ratings are limited by terminal equipment.
- ¹Line has failed carrier equipment that cannot be repaired or replaced





Need Number: PN-2019-013
Process Stage: Need Meeting

Date: 02/22/2019

Project Driver(s):

Operational Flexibility and Efficiency

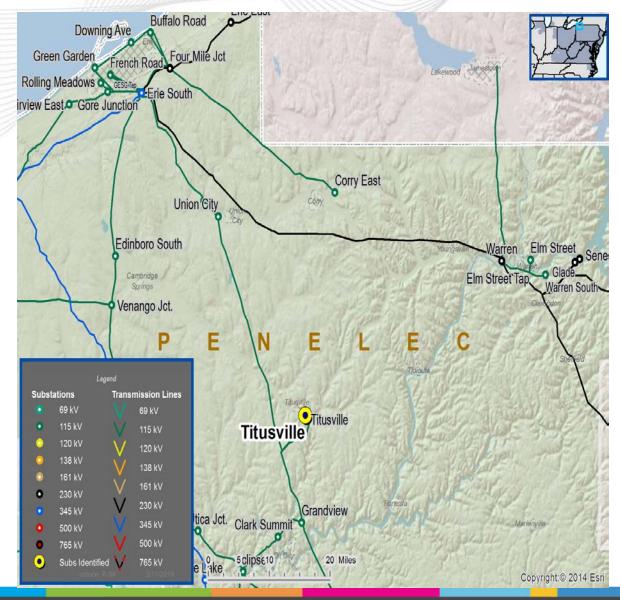
Specific Assumption Reference(s)

System Performance Projects Global Factors

- Substation/line equipment limits
- Load at risk in planning and operational scenarios
- Load and/or customers at risk on single transmission line

System Conversion Methodology

Customer feedback


#### **Problem Statement**

- Titusville 115 kV substation serves approximately 45 MW of load to 5,300 customers. A stuck bus tie breaker at Titusville will outage both #1 and #2 115-34.5 kV transformers and 115 kV network path.
- PJM has issued a PCLLRW to potentially drop 8 MW of load in the Titusville/Union City area to mitigate thermal overloads on the Titusville – Union City 115 kV line for the outage of Erie West – Erie South 345 kV line and Glade – Warren 230 kV line on July 24, 2018 and August 9, 2018.

Transmission line ratings are limited by terminal equipment.

- Union City Titusville 115 kV line: Existing line rating is 120 / 120 MVA (SN / SE). Existing conductor rating is 202 / 245 MVA (SN / SE)
   (line relaying, substation conductor, line trap)
- Grandview Titusville 115 kV line: Existing line rating is 147 / 149 MVA (SN / SE). Existing conductor rating is 202 / 245 MVA (SN / SE)

(line relaying, substation conductor, line trap)





## Questions?





# Appendix



| <b>Assum</b> | ptions |
|--------------|--------|
| , 100aiii    |        |

| Activity                                      | Timing                             |
|-----------------------------------------------|------------------------------------|
| Posting of TO Assumptions Meeting information | 20 days before Assumptions Meeting |
| Stakeholder comments                          | 10 days after Assumptions Meeting  |

### Needs

| Activity                                       | Timing                       |
|------------------------------------------------|------------------------------|
| TOs and Stakeholders Post Needs Meeting slides | 10 days before Needs Meeting |
| Stakeholder comments                           | 10 days after Needs Meeting  |

### Solutions

| Activity                                           | Timing                           |  |
|----------------------------------------------------|----------------------------------|--|
| TOs and Stakeholders Post Solutions Meeting slides | 10 days before Solutions Meeting |  |
| Stakeholder comments                               | 10 days after Solutions Meeting  |  |

Submission of Supplemental Projects & Local Plan

| Activity                                              | Timing                                                                                      |  |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------|--|
| Do No Harm (DNH) analysis for selected solution       | Prior to posting selected solution                                                          |  |
| Post selected solution(s)                             | Following completion of DNH analysis                                                        |  |
| Stakeholder comments                                  | 10 days prior to Local Plan Submission for integration into RTEP                            |  |
| Local Plan submitted to PJM for integration into RTEP | Following review and consideration of comments received after posting of selected solutions |  |



## **Revision History**

2/12/2019 – V1 – Original version posted to pjm.com