Market Efficiency Process Enhancement Task Force
Phase 3

Jack Thomas
Knowledge Management Center
February 4, 2020
Planning Committee
MEPETF Background

- Market Efficiency Process Enhancement Task Force
 - Approved to start work in January 2018
 - Address challenges and opportunities for improvements to Market Efficiency process since implementing FERC Order 1000 processes
- Phase 1 completed - August 2018
- Phase 2 completed - April 2019
- Phase 3
 - Benefit-to-Cost Calculations:
 - Separate Energy and Capacity
 - Consider Positive and Negative Impacts
 - Consider Risk
 - New Regional Targeted Market Efficiency Project Process
Issues addressed via 3 sets of packages. Poll results based on each separate set of packages

- A -- RTMEP
- B – Benefit Calculation
- C -- Window for Capacity Drivers

13 Unique Responders
Representing 110 Companies

Package Owners

- **PJM**
 - A1, B1, C1
- **IMM**
 - A2, A3, B2, B3, C2
- **First Energy**
 - B4
- **AEP**
 - A4
Support for each option with regard to using a new RTMEP process for market efficiency projects Non-Binding Poll Results

- **72%**
 - Make a Change

- **67%**
 - Package A4 (AEP)
 - Benefits based on 2 years of Historical Congestion
 - Project Capital Cost
 - No Discounts
 - 4 Years Benefits Cover Capital Costs
 - Projects Designated to Incumbent TO

- **36%**
 - Package A1 (PJM)
 - Same as A4 except uses a 30-Day Competitive Window to Assign Project

- **36%**
 - Package A2 (IMM)
 - Same as A1 except:
 - Benefits based on Changes in System-Wide Load Costs
 - Cost Risk Considered
 - 1.25 Passing Threshold

- **28%**
 - Package A3 (IMM)
 - Same as A2 except:
 - Benefits Based on Changes in System-Wide Production Costs
Support for each option with regard to the benefit calculation metric used for market efficiency projects Non-Binding Poll Results

Make a Change

52%

55%
Package B1 (PJM)

20%
Package B4 (FE)

18%
Package B2 (IMM)

11%
Package B3 (IMM)

• Calculation Years
 • RPM and RTEP Years
• In-Service Date
 • June 1 of RPM DY

• Energy Benefit Sensitivities
 • Weighted Avg Based on Historic
 • Avg Monte Carlo Results rather than Single Draw

• Same as B4 except Benefit Calculations Based on System-Wide Load Cost Changes
 • Net Model of Congestion

• Same as B4 except Benefit Calculations Based on System-Wide Production Cost Changes
Support for each option with regard to the window for capacity drivers used for market efficiency projects Non-Binding Poll Results

85% Make a Change

100% Package C1 (PJM)
- Separate Windows and Timing for Energy and Capacity
- Coordination of Project with Energy and Capacity Benefits

31% Package C2 (IMM)
- One Annual Window for Both Energy and Capacity Combined
Next Steps

• March 10 PC
 – Package Endorsements

• March 26 MRC
 – First Read of Endorsed Packages and Documentation Updates

• April 30 MRC
 – Endorsement of Packages and Documentation Updates
New RTMEP Process for Market Efficiency Projects
Market Efficiency Process Enhancement Task Force:
Phase 3
PJM Proposal

Nick Dumitriu, Market Simulation
February 4, 2020
Planning Committee
• Proposing three changes to the market efficiency process:

1. Create a backwards looking “quick hit” market efficiency process to address persistent congestion not identified in the forward looking planning model (PJM Proposal Package A1)

2. Modify calculation inputs for RPM benefits (PJM Proposal Package B1)

3. Create standalone process to address RPM drivers independent of energy driver analysis (PJM Proposal Package C1)
<table>
<thead>
<tr>
<th>Design Component</th>
<th>Status Quo</th>
<th>Proposed Change</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualified Projects</td>
<td>No process exists</td>
<td>Projects which resolve congestion on one or more Qualified Congestion Driver(s), with a capital cost under $20 million, to be in service by June 1 of the third summer season</td>
<td>Establish process to fill gap that exists when historical congestion is persistent and not captured in planning models</td>
</tr>
<tr>
<td>Qualified Congestion Drivers</td>
<td>No process exists</td>
<td>PJM identified facilities with significant and persistent historical congestion (based on previous 2 years) that are not due to outages, that are not addressed by any planned system changes</td>
<td></td>
</tr>
<tr>
<td>Benefits</td>
<td>No process exists</td>
<td>Average of past 2 years of historical congestion (Day Ahead + Balancing), adjusted for outage impacts</td>
<td></td>
</tr>
<tr>
<td>Cost</td>
<td>No process exists</td>
<td>Project capital cost (no discount or inflation rate)</td>
<td></td>
</tr>
<tr>
<td>Passing Threshold</td>
<td>No process exists</td>
<td>Four years worth of Benefits (no discount/inflation rate) must completely cover project’s capital cost</td>
<td></td>
</tr>
</tbody>
</table>
PJM Proposal – Package A1 (continue)

Create new RTMEP process to address historical congestion not captured in planning models

<table>
<thead>
<tr>
<th>Design Component</th>
<th>Status Quo</th>
<th>Proposed Change</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timing and Coordination between TMEP and ME Processes</td>
<td>No process exists</td>
<td>TMEPs will be studied periodically throughout the market efficiency 24-month cycle. Any identified TMEP driver will be reviewed by TEAC and identified solutions will be approved by Board on an as needed basis.</td>
<td>Establish process to fill gap that exists when historical congestion is persistent and not captured in planning models</td>
</tr>
<tr>
<td>Unit Retirements in Area of Congestion</td>
<td>No process exists</td>
<td>Announced generator deactivations at time of project recommendation are considered.</td>
<td></td>
</tr>
<tr>
<td>Competitive Process Type</td>
<td>No process exists</td>
<td>Sponsorship Model (Competitive Window)</td>
<td></td>
</tr>
<tr>
<td>TMEP Window</td>
<td>No process exists</td>
<td>30-day window, as needed</td>
<td></td>
</tr>
</tbody>
</table>
Regional Targeted ME Projects: IMM Packages
Status Quo: No Process
• Uncertain benefits are highly sensitive to assumptions regarding fuel mix and fuel prices
 • Dramatic changes in projected benefits and costs possible
 • Risk of incorrect answer forced on customers in the form of a regulated rate of return asset
 • Market would be able to correct for a bad investment, same is not true of regulated assets
• LMPs are correct, not a sign of market inefficiency
 • Congestion is the result of least cost security constrained optimization
 • LMP provides the marginal price of energy by location
Package A2

- Proposal is to improve the calculation of benefits in the B/C analysis
 - Benefit measured as changes in system wide load cost, net of modeled congestion allocations
 - Positive and negative benefits (load costs)
 - Accounting for changes in ARR related offsets
 - Use the average of the forecasted benefits
- Cost risk considered in analysis
- 1.25 B/C ratio
- Competitive window for all projects and/or funding
Package A3
• Proposal is to improve the calculation of benefits in the B/C analysis
 • Benefit measured as changes in system wide production cost
 • Positive and negative benefits (production costs)
 • Use the average of the forecasted benefits
• Cost risk considered in analysis
• 1.25 B/C ratio
• Competitive window for all projects and/or funding
AEP Presentation to PJM PC
Regional TMEP (Package A4)

PJM PC Meeting February 4, 2020
Description of Package (A4)

1. Regional TMEP Package (A4) is identical to Package (A1) in all respects except for the process for identifying the solution and selecting the developer
 a) Package (A1) calls for identification and selection through proposal window
 b) Package (A4) calls for identification and selection without proposal window
Rationale for Package (A4)

1. Regional TMEP construct is looking to address historical congestion through quick-hit non-greenfield upgrades that can be placed in-service in short order

2. Regional TMEP projects must be in-service by third summer after approval
 a) Limited amount of time to accommodate proposal window planning process
 b) Proposal window unlikely to change the identification and selection decision

3. Interregional PJM-MISO TMEP planning process has successfully produced half-dozen projects costing $0.12M to $6.70M and assigned to incumbent TOs
 a) b2971, b2972, b2973, b2974, b2975, b3053
 b) None involve greenfield projects (are non-competitive by FERC’s definition)
 - three involve reconductoring of lines,
 - one involves reconfiguration of ring bus, and
 - two involve replacement/upgrading of terminal equipment.
 c) Expectation that regional planning process will produce similar projects

4. PJM may not be able to share historical model needed for proposal window since historical model may contain market sensitive information
 a) Holding proposal window without modeling information is unproductive
Questions ???

Takis Laios (tlaios@aep.com)
Benefit Calculation Metric Used for Market Efficiency Projects
• Proposing three changes to the market efficiency process:

1. Create a backwards looking “quick hit” market efficiency process to address persistent congestion not identified in the forward looking planning model (PJM Proposal Packages A1)

2. Modify calculation inputs for RPM benefits (PJM Proposal Package B1)

3. Create standalone process to address RPM drivers independent of energy driver analysis (PJM Proposal Package C1)
PJM Proposal – Package B1
Changes to the capacity benefit calculation

<table>
<thead>
<tr>
<th>Design Component</th>
<th>Status Quo</th>
<th>Proposed Change</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity Benefit Calculation Simulation Years</td>
<td>RTEP, RTEP+3 and RTEP+6</td>
<td>RPM and RTEP years</td>
<td>Addresses topology and CETL uncertainties beyond RTEP year</td>
</tr>
<tr>
<td>In-Service for RPM Market</td>
<td>No restrictions</td>
<td>To be in service prior to June 1 of the Delivery Year for which the Base Residual Auction is being conducted. In the event a transmission expansion cannot be placed in service by this date, PJM will consider capacity market solutions that can be in service before RTEP year.</td>
<td>Ensure projects address a capacity driver by the RPM year</td>
</tr>
</tbody>
</table>

PJM is not proposing changes to the existing energy benefit calculation or rules governing project cost commitments

Summary available [here](#)
IMM Proposals: B/C Analysis

PC
February 4, 2020
Issues with Benefit/Cost Analysis

• Order 1000 does not require the type of benefit/cost analysis included in PJM’s rules.

• Transmission should be built to meet reliability needs in a cost effective and efficient manner.

• Transmission should be built to integrate new generation consistent with PJM deliverability rules.

• PJM’s benefit/cost approach results in transmission investments inappropriately displacing new generation.
Issues with Benefit/Cost Analysis

• Current B/C Analysis includes only energy benefit to those zones that would benefit from the project
 • Ignores zones that would be hurt by project.

• To evaluate benefits, need to include all costs of project
 • Include increases in costs
Need to Account for Risk in Benefit/Cost Analysis

Benefits cannot be accurately projected over a 15 year period with the certainty required to justify a significant transmission project.
Need to Account for Risk in Benefit/Cost Analysis

Benefit assumptions in B/C analysis are not subject to rigorous sensitivity analysis

• One benefit estimate used in ratio
• Does not explicitly account for different probabilities (generation build, changes in fuel costs, load change) in ratio

• Uncertainty in assumptions/parameters can be evaluated with a sensitivity analysis
 • Monte Carlo
 • Both Benefits and Costs subject to uncertainty
Regional and Lower Voltage Benefit Calculation: IMM Packages
Package B2

• Proposal is to improve the calculation of benefits in the B/C analysis
 • Difference in total load costs before and after proposed project, net of modeled congestion allocation
 • Positive and negative benefits (load costs)
 • Accounting for changes in ARR related offsets
 • Use a weighted average of the forecasted benefits, weights based on historic variability
 • Hourly Monte Carlo: replace single draw with average of results
 • Same metric for benefit calculation used for regional and local projects
Package B3

• Proposal is to improve the calculation of benefits in the B/C analysis
 • Difference in total system wide production costs before and after proposed project
 • Positive and negative benefits (production costs)
 • Use a weighted average of the forecasted benefits, weights based on historic variability
 • Hourly Monte Carlo: replace single draw with average of results
 • Same metric for benefit calculation used for regional and local projects
MEPETF Phase 3, Package B4 (First Energy) Proposal

- Includes elements of IMM’s Package B2 & B3 that would calculate Energy Benefit using:
 - Weighted average of Sensitivities
 - Average of multiple Monte Carlo results
 These process enhancements are important to
 - Substantiating the beneficial value of proposals
 - Moderating extrapolation of benefits far into the future

- Excludes elements of IMM’s Package B2 & B3 that would change the formula for applying Load Payments and Production Costs to Energy Benefit calculation.

- Includes timing restrictions for Capacity Market solutions as in Packages B1, B2 and B3.
Window for Capacity Drivers Used for Market Efficiency Projects
• **Proposing three changes to the market efficiency process:**

1. Create a backwards looking “quick hit” market efficiency process to address persistent congestion not identified in the forward looking planning model (PJM Proposal Package A1)

2. Modify calculation inputs for RPM benefits (PJM Proposal Package B1)

3. Create standalone process to address RPM drivers independent of energy driver analysis (PJM Proposal Package C1)
<table>
<thead>
<tr>
<th>Design Component</th>
<th>Status Quo</th>
<th>Proposed Change</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle Type</td>
<td>24-Month</td>
<td>24-Month for Energy drivers 12-Month for Capacity drivers</td>
<td>Address capacity driver in time for BRA delivery year</td>
</tr>
<tr>
<td>Proposal Windows Type and Duration</td>
<td>120-day long-term window for Energy, Capacity and multi-criteria drivers; biennial</td>
<td>120-day biennial window for long-term Energy drivers 60-day annual short-term window for Capacity exclusive and multi-criteria drivers, when needed</td>
<td></td>
</tr>
<tr>
<td>Window Timing</td>
<td>January-April of odd years</td>
<td>Energy: January-April of odd years Capacity: Following the annual Base Residual Auction (BRA)</td>
<td></td>
</tr>
<tr>
<td>Capacity Driver Criteria</td>
<td>Tied to Eligible Energy Congestion Drivers</td>
<td>Follow existing OATT Att. DD, Section 15 language</td>
<td>Existing procedures outline when transmission solutions are appropriate in RPM</td>
</tr>
<tr>
<td>Window Timing and Coordination Energy Drivers and Capacity Drivers</td>
<td>N/A</td>
<td>If the same congestion drivers are identified for both Energy and RPM, then the combined benefits will be evaluated during the 24-month process. Latest available ME base case used to evaluate proposals for such multi-criteria drivers.</td>
<td></td>
</tr>
</tbody>
</table>
Window: IMM Package
Package C2

• Status quo except for:
 • Window Timing (Annually rather than odd years)
 • Capacity Driver Criteria: Strictly follow existing OATT Att. DD, Section 15 language
Appendix
<table>
<thead>
<tr>
<th>Design Component</th>
<th>MEP</th>
<th>Regional TMEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benefit Metric</td>
<td>Net Load Payment Savings</td>
<td>Congestion Cost Savings</td>
</tr>
<tr>
<td>Project cost for B:C Ratio</td>
<td>15-years of Annual Revenue Requirement</td>
<td>Total Capital Cost</td>
</tr>
<tr>
<td>Project Cost Cap</td>
<td>N/A</td>
<td>$20M</td>
</tr>
<tr>
<td>In-service Date</td>
<td>RTEP year or later</td>
<td>3rd Summer Peak</td>
</tr>
<tr>
<td>Passing Threshold</td>
<td>1.25:1 NPV over 15 years</td>
<td>1:1 over 4 years</td>
</tr>
<tr>
<td>Qualified Congestion Driver</td>
<td>Simulated congestion of $1M or more in each RTEP and RTEP+3 simulation years</td>
<td>Historical avg. congestion of $1M or more in 2 previous years; Simulated congestion less than MEP threshold</td>
</tr>
<tr>
<td>Proposal Window</td>
<td>120 days</td>
<td>30 days</td>
</tr>
</tbody>
</table>
Capacity Window Workflow Chart

Annual BRA Auction

- Any binding RPM Constraint?
 - Yes: Capacity Driver is also an Energy Driver?
 - Yes: Is 1st year of 24-month Market Efficiency Cycle?
 - Yes: Energy Driver already posted in current RTEP Window?
 - Yes: Evaluate proposals from current Long-Term Window using both Energy and Capacity Benefits
 - No: Open Capacity Window (Evaluate proposals using both Capacity and Energy Benefits)
 - No: Open Capacity Window (Evaluate proposals using only Capacity Benefits)
 - No: No Capacity Window
 - No: Binding RPM Constraint Passes Attachment DD Criteria?
 - Yes: Post Capacity/Energy Driver in next Long-Term Window
 - No: No Capacity Window
Regional and Lower Voltage Benefit Calculation: IMM Packages
Proposal 1: Eliminate The Process

• Current approach favors nonmarket solutions over market solutions to market signals
 • Markets shift risk to those that can best internalize the risk
 • Fundamental premise of PJM markets not represented in efficiency project approach
• Rate of return assets vs. competitive market responses to prices
Proposal 1: Eliminate The Process

- Uncertain benefits are highly sensitive to assumptions regarding fuel mix and fuel prices
 - Dramatic changes in projected benefits and costs possible
 - Risk of incorrect answer forced on customers in the form of a regulated rate of return asset
 - Market would be able to correct for a bad investment, same is not true of regulated assets

- LMPs are correct, not a sign of market inefficiency
 - Congestion the result of least cost security constrained optimization
 - LMP provides the marginal price of energy by location
At the MEPETF meeting on 07/30/19, the IMM referenced market mechanics and examples to argue for changes to the benefits calculation. AEP would appreciate having the same argument made using qualitative and policy principles. Such an approach would better illustrate the issue of economic inefficiencies caused by transmission constraints. AEP would welcome having the following qualitative example used to illustrate the issue raised by the IMM as opposed to using the calculation of market mechanics.

Several loads have joined the same RTO with the expectation that the system would be planned and operated in an economically efficient manner, and thus, all loads are paying the same price for generation at any given point in time.

A transmission constraint results in the middle of the system that causes the cheaper generation that is located upstream from that constraint to run less frequently and at a lower output level than it would if that constraint was not present. That same constraint also now causes the more expensive generation that is located downstream from that constraint to run more frequently and at a higher output level than it would if that constraint was not present.

This transmission constraint effectively provides the loads that are located upstream from that constraint the unintended positive of having exclusive access to the cheaper generation that is located upstream from that constraint. That same constraint also provides the loads that are located downstream from that constraint the unintended negative of having exclusive access to the more expensive generation that is located downstream from that constraint.

Given the initial expectation that the loads joined the same RTO with the expectation that the system would be planned and operated in an economically efficient manner, and thus, all loads were paying the same price for generation at any given point in time prior to the transmission constraint, the fundamental policy question becomes:

Does the downstream load have the right to advise the regional planner that it wants to fund a transmission upgrade that would mitigate the transmission constraint, thus giving that downstream load access to the cheaper generation that is located upstream from that transmission constraint?

The logical answer would be “yes”!

Understandably, given that this mitigation would effectively increase the cost of the generation that is being accessed by the upstream load (while decreasing the cost of the generation that is being accessed by the downstream load), that upstream load would not be asked to fund that transmission upgrade.

That upstream load, however, cannot prevent that transmission upgrade from being constructed by insisting that their increased generation costs must be taken into account when determining the economic benefits of that transmission upgrade, since the transmission upgrade is eliminating unintended positives that the transmission constraint was providing to the upstream load. For that reason, the upstream load cannot claim as costs the elimination of the unintended positives that the upstream load was receiving as a result of that transmission constraint.