VOM Examples

MRC May 24, 2018 Joel Romero Luna Catherine Tyler Joe Bowring

Monitoring Analytics

Comments on PJM Cost Impacts

- A full cost impact of either proposal on LMP requires a full rerunning of the market and assumptions about offer behavior.
 - Simplistic estimates are misleading.
- Per the SOM, 0.3 percent of annual MWh are offer capped for energy.
 - When price offer greater than cost offer.
 - Approximately one third of generators offer below the cost-based offer.
 - Price offers increase when cost offers increase.
- PJM ignores start and no load costs.

• PJM ignores cyclic starting and peaking factors.

Comments on PJM Cost Impacts

- PJM approved maintenance adders already exceed EIA benchmarks, without major maintenance and overhauls.
 - Average CT approved adder: \$48.42/MWh.
 - 45 percent of reviewed CTs have an adder between 1x and 10x EIA's \$3.50/MWh.
 - 16 percent of reviewed CTs have an adder greater than 10x EIA's \$3.50/MWh.
 - Average CC approved adder: \$3.59/MWh
 - 19 percent of reviewed CTs have an adder between 1x and 20x EIA's \$3.50/MWh.

Potential Impacts Ignored by PJM

- In 2017, 7,756 GWh were made whole via day-ahead uplift. The average payment was \$9.88/MWh. An increase of \$1/MWh results in an increase of \$8 million in uplift.
- In 2017, 6,357 GWh were made whole via balancing operating reserves (uplift). The average payment was \$9.00/MWh. An increase of \$1/MWh results in an increase of \$6 million in uplift.
- In 2017, an increase of \$1/MWh in offers results in an increase of \$14 million in uplift.

Potential Impacts Ignored by PJM

- High maintenance costs will allow more units to be offered above \$1,000 per MWh. For example, a 100 MW unit with a \$6 per MWh maintenance adder and a 2 MW peaking segment can calculate a \$900 per MWh adder.
 - \$6/MWh is equivalent to \$600/hour for a 100 MW CT
 - Manual 15 peaking maintenance adder equation:

Peak Incremental Maintenance Rate

 $= \frac{\text{Cyclic Peaking Factor}}{\text{Peak Pickup}} * \text{Equivalent Hourly Maintenance Cost}$

• 3 / (2 MW) * \$600/hour = \$900 per MWh

Maintenance Cost Calculation Overview

- Total maintenance dollars calculated annually
- Maintenance dollars are applied to energy MWh, starts, hourly no load, and peaking energy MWh.
- Starts and peaking energy hours use a multiplier to reach an equivalent service hour.
- PJM allows generators to adjust their allocation of maintenance dollars among starts, hours, energy, and peaking energy.

Example 1: CONE CT

		CONE CT	
ICAP	MW	205	
Total Maintenance	\$	2,998,740	
Assumptions			
Run Hours	hours	2,952	
Peaking hours	hours	20	
Starts	starts	170	
Peaking Segment	MW	10	

Example 1: CONE CT

		CONE CT		CONE CT
ICAP	MW	205	Maintenance Cost Allocation per Manual 15	
Total Maintenance	\$	2,998,740	In \$ per hour (applied to the no load cost) \$/hour	636
			In \$ per start (applied to the start cost) \$/start	6,364
Assumptions			In \$ per MWh (applied to peaking MW) \$/MWh	191
Run Hours	hours	2,952		
Peaking hours	hours	20		
Starts	starts	170		
Peaking Segment	MW	10		
			Monitoring Anglytics	
©2018	www.	monitoringanalytic	s.com 8 Monitoring Analytics	

Example 1: CONE CT

		CONE CT			CONE CT
ICAP	MW	205	Maintenance Cost Allocation per Manual 15		
Total Maintenance	\$	2,998,740	In \$ per hour (applied to the no load cost)	\$/hour	636
			In \$ per start (applied to the start cost)	\$/start	6,364
Assumptions			In \$ per MWh (applied to peaking MW)	\$/MWh	191
Run Hours	hours	2,952	Maintenance Cost Allocation Result		
Peaking hours	hours	20	Effective Cost in \$/MWh for a 2 hour run		
Starts	starts	170	Allocation per Manual 15	\$/MWh	27.94
Peaking Segment	MW	10	All allocated in the incremental curve	\$/MWh	4.96
			All allocated in the start cost	\$/MWh	43.02

Example 2: \$3.50/MWh

		EIA CT	
ICAP	MW	150	
Total Maintenance	\$	1,000,000	
Assumptions			
Run Hours	hours	1,905	
Peaking hours	hours	20	
Starts	starts	170	
Peaking Segment	MW	15	

Example 2: \$3.50/MWh

		EIA CT		EIA CT
ICAP	MW	150	Maintenance Cost Allocation per Manual 15	
Total Maintenance	\$	1,000,000	In \$ per hour (applied to the no load cost) \$/hour	273
			In \$ per start (applied to the start cost) \$/start	2,729
Assumptions			In \$ per MWh (applied to peaking MW) \$/MWh	54.57
Run Hours	hours	1,905		
Peaking hours	hours	20		
Starts	starts	170		
Peaking Segment	MW	15		
©2018	www.	monitoringanalytic	cs.com 11 Monitoring Analytics	

Example 2: \$3.50/MWh

		EIA CT			EIA CT
ICAP	MW	150	Maintenance Cost Allocation per Manual 15		
Total Maintenance	\$	1,000,000	In \$ per hour (applied to the no load cost)	\$/hour	273
			In \$ per start (applied to the start cost)	\$/start	2,729
Assumptions			In \$ per MWh (applied to peaking MW)	\$/MWh	54.57
Run Hours	hours	1,905	Maintenance Cost Allocation Result		
Peaking hours	hours	20	Effective Cost in \$/MWh for a 2 hour run		
Starts	starts	170	Allocation per Manual 15	\$/MWh	16.37
Peaking Segment	MW	15	All allocated in the incremental curve	\$/MWh	3.50
			All allocated in the start cost	\$/MWh	19.61

Monitoring Analytics, LLC 2621 Van Buren Avenue **Suite 160 Eagleville**, PA 19403 (610) 271-8050

MA@monitoringanalytics.com www.MonitoringAnalytics.com

©2018