Five Minute Dispatch and Settlements Fast Start Example

MIC Special Session May 1, 2020 IMM

Example

- Example with fast start pricing, and associated settlements for dispatch differential lost opportunity cost.
- Example for 11:30 11:35 AM interval.
- SCED case with block loaded fast start unit.
 - Dispatch run does not have integer relaxation.
 - Pricing run can clear the unit between zero and its economic maximum MW.

IMM Proposal

IMM Proposal

PJM Proposal

PJM Proposal

Dispatch and Pricing Timeline

- Under the IMM proposal, dispatch and prices apply to the same interval.
 - Case 1 dispatches from 11:30 to 11:35, prices applied to the same interval.
 - Dispatch run, pricing run, settlements align.
- Under the PJM proposal, the SCED dispatch instructions from Case 1 are overwritten by Case 2 halfway along the 10 minute ramp.
 - The interval between 11:30 11:35 AM is priced using an LPC case with target 11:35 AM, but the dispatch instructions during this time are from the next case that is approved at 11:30 AM for target time 11:40 AM.
 - Settlements for the five minute interval based on a mix of two cases.

Two Unit Example

Flexible Unit (Non Fast Start) Offer				Fast Star	t Unit Offer			
Noload Cost (\$/hour)		\$800		Noload Cost (\$/hour)		\$58	8	
				Start Cost	(\$)	\$4	2	
				Min Run 7	lime (hours)		1	
		Area Under the					Amortized	d j
		Incremental	Cost			Amortized	Noload	Composite
MW	Price (\$/MWh)	Curve (\$/hour)	(\$/hour)	MW	Price (\$/MWh)	Start Cost	Cost	Energy Offer
60	\$20	\$1,200	\$2,000	42	\$33		\$1 \$	\$48
					+00		ΨIΨ	··· • • •
100	\$40	\$2,400	\$3,200				Ψ1 Ψ	••••
100 120	\$40 \$50	\$2,400 \$3,300	\$3,200 \$4,100				• · · · ·	
100 120 Economic	\$40 \$50 Max MW	\$2,400 \$3,300 100 MW	\$3,200 \$4,100	Economic	c Max MW	42 MW		

8

Two Unit Example – IMM Proposal

Case 1 - Target 11:35		
Approved 11:30		
Price applied to interval 11:30 - 11:35		
Load (MW)	102	102
Flexible unit	Dispatch Run	Pricing Run
Dispatch MW at target	60	100
LMP	\$20	\$48
Block loaded FS Unit		
Dispatch (Target) MW	42	2
LMP	\$20	\$48
Flexible Unit Settlements		
Unit expected MW at target	60	100
LMP Revenue	\$2,880	\$4,800
Cost (Area under curve + noload)	\$2,000	\$3,200
Revenue above cost	\$880	\$1,600
Dispatch Differential LOC	\$720	
Profit with LOC	\$1,600	\$1,600

In dispatch run, fast start unit is block loaded, marginal MW from flexible unit at \$20/MWh.

In pricing run, flexible unit is at its economic maximum, fast start unit is marginal, sets LMP at \$48/MWh.

Two Unit Example – IMM Proposal

- Dispatch differential lost opportunity cost (LOC):
 - Dispatch Differential LOC will equal the positive difference between the revenue above cost that a resource would have received if it operated at the Pricing Run MW and the actual revenue above cost the resource earned.
- With the proposed dispatch differential LOC, the flexible unit does not have an incentive to deviate from dispatch target.
- The interval being priced is the same as the interval when the dispatch run instructions are effective, resulting in an accurate dispatch differential LOC.

PJM Proposal

Two Unit Example – PJM Proposal

- The actual dispatch instructions during 11:30 AM 11:35 AM are from the next case, approved at 11:30 AM for target time 11:40 AM.
- The dispatch MW from this next case are different from the dispatch MW from the case used to price the 11:30 – 11:35 interval. As a result, the incentives do not align for following dispatch.
- In the example, load is increasing, and the dispatch instruction to the flexible unit increases from 60 MW to 65 MW at 11:30.

Two Unit Example – PJM Proposal

Case 1 - Target 11:35				
Approved 11:25				
Price applied to interval 11:30 - 11:35				
Load (MW)	102	102		
Flexible unit	Dispatch Run	Pricing Run		
Dispatch MW at target	60	100		
LMP	\$20	\$48		
Block loaded FS Unit				
Dispatch (Target) MW	42	2		
LMP	\$20	\$48		
Flexible Unit Settlements				
Unit expected MW at target	65	100		
LMP Revenue at dispatch MW	\$2,880	\$4,800		
LMP Revenue at actual MW	\$3,120			
Cost of actual MW (at 65 MW)	\$2,106			
Cost of dispatch MW (at 60 MW)	\$2,000			
Dispatch Run Revenue above cost	\$1,120			
Pricing Run Cost		\$3,200		
Pricing Run Revenue above cost		\$1,600		
Dispatch Differential LOC	\$480			
Profit with LOC	\$1,494	\$1,600		
©2020 www.moni	www.monitoringanalytics.com 13			

 Dispatch Run Revenue Above Cost =

Greater of (Dispatch MW * LMP_P , Actual MW * LMP_P) –

Lesser of (Cost of Dispatch MW, Cost of Actual MW)

- Greater of (60* \$48, 65* \$48)
 Lesser of (\$2000, \$2106)
- Greater of (\$2880, \$3120) Lesser of (\$2000, \$2106)
- Dispatch Run Revenue Above
 Cost = \$1,120.

Two Unit Example – PJM Proposal

- The dispatch run and pricing run results (MW and LMP) are identical to the results shown in the IMM proposal example.
- The dispatch run used to price and settle the interval clears the non fast start unit at 60 MW.
- The actual dispatch instructions (from next case approved at 11:30) ramp the unit to 65 MW.
- The dispatch differential LOC does not make up for the revenue above cost if the unit followed the price signal instead.

Appendix: Dispatch Differential LOC Formula

- Pricing Run Revenue Above Cost = (Energy MW_P + Reserve MW_P) * LMP_P – Area under Incremental Energy Offer
- Dispatch Run Revenue Above Cost =
- Greater of (Dispatch MW * LMP_P , Actual MW * LMP_P) Lesser of (Cost of Dispatch MW, Cost of Actual MW)
- Dispatch Differential LOC = Max(Pricing Run Revenue Above Cost – Dispatch Run Revenue Above Cost, 0)
- Where:
 - $LMP_P = Pricing Run LMP$; Energy $MW_P = Pricing Run MW$
 - Dispatch MW = MW from Dispatch run

Monitoring Analytics, LLC 2621 Van Buren Avenue Suite 160 Eagleville, PA 19403 (610) 271-8050

MA@monitoringanalytics.com www.MonitoringAnalytics.com

