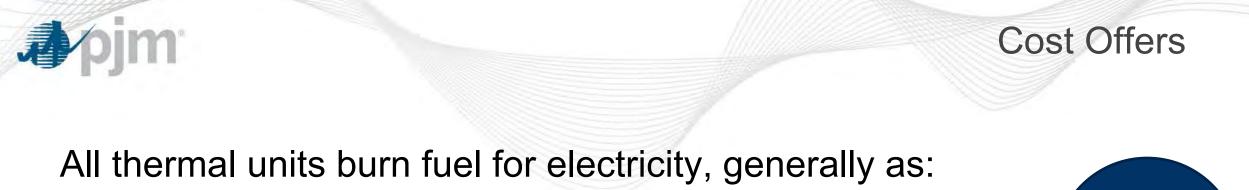


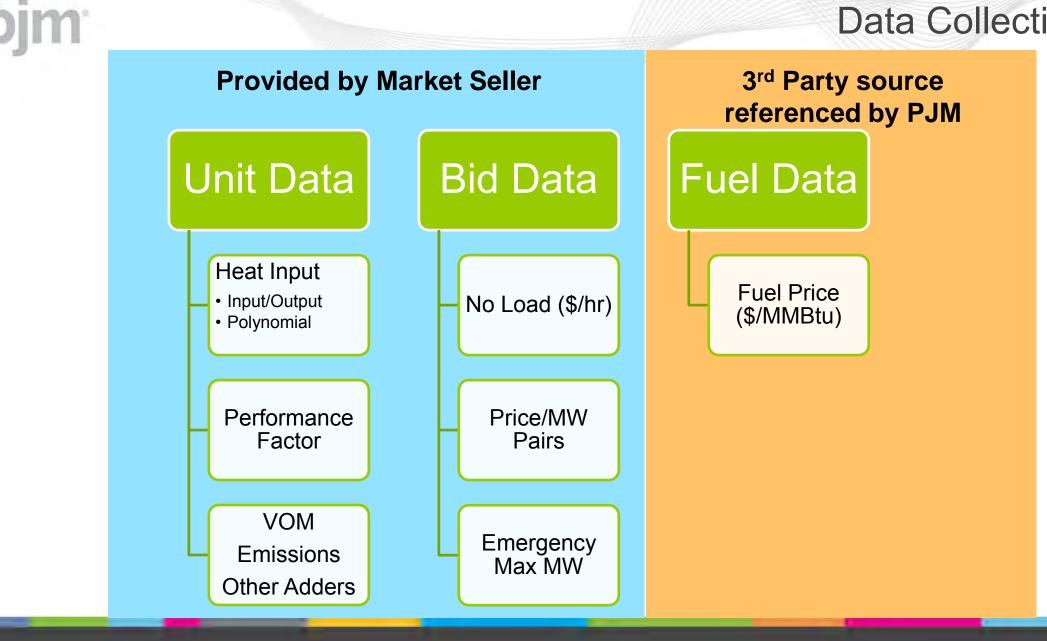
Greater Than \$1000/MWh Cost Offer Verification Proposal


Scott Benner Sr. Engineer, Market Analysis MIC Special Session Market Operations Price Transparency April 25, 2017

www.pjm.com

FERC Order 831

Jpjm


- FERC Order 831 "Offer Caps":
 - Validation of cost of incremental energy offers that exceed \$1,000/MWh before the unit is allowed to set LMP
 - Maximum incremental cost allowed to set LMP at \$2,000/MWh
- "... ensure that a resource's cost-based incremental energy offer reasonably reflects that resource's actual or expected costs."
- *Ex ante* Validation implementation November 1st, 2017 with IDO

• Details are specified in the Operating Agreement Schedule 2

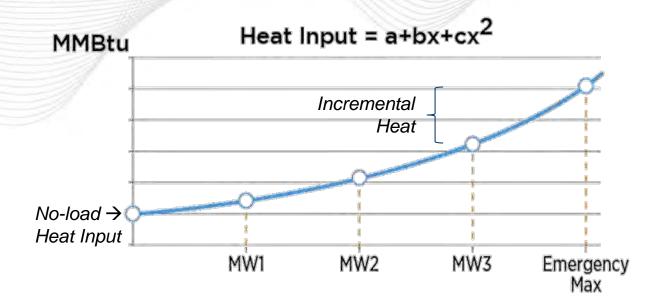
- PJM will use a third party vendor for forward and intra-day (near
 - Point will use a trind party vendor for forward and intra-day (near real-time) commodity price data
 - Each gas unit may specify up to four trading hubs
 - Trading hubs are documented in Fuel Cost Policy
 - Units behind a citygate or on a non-traded hub may specify nearest applicable proxy hub
 - PJM will use the highest price among assigned hubs, with a variance adder allowing for uncertainty

Fuel Cost Variance Adder

• Examined historical natural gas, North NJ, Winter price ranges:

Statistic	Distribution Percentage	2014 2015	2015 2016	2016 2017	3-Year
Mean + 1 σ	68%	11.6%	11.8%	5.2%	10.1%
Mean + 2 σ	95%	18.1%	17.2%	7.4%	15.2%
Mean + 3 σ	99%	24.5%	22.6%	9.5%	20.4%

PERCENT = (HIGH TRADE – SETTLED PRICE) / SETTLED PRICE



- The Heat Input Curve describes the operational characteristics that convert fuel input to energy production
 - -1 mmBTU = 1,000,000 BTUs = 10 therms = 1 dekatherm
 - 1 MW = 1,000 kW
- The Heat Input can be represented as
 - Polynomial with MW ranges $mmBTU = a MW^2 + b MW + c$
 - Table of Input / Output pairs mmBTU, MW
- A Performance Factor (PF) scales heat up for actual/theoretical
 - Value of 1.0 is normal for recently performance-tested units

Heat Input

- Block-loaded machinery (CTs, Diesels) generally have 1 output point
- Fossil (Steam, Combined Cycle) operate on a nonlinear curve
 - Operational data to find fuel / MWh pairs
 - Regression modelling to find coefficients

No Load = Heat req. to run at zero MW output

Heat Incremental = Addl. heat req. to increase output

Duct Burners = Supplementary burners that increase MW output w/ different operating characteristics, results in a second polynomial band

Maximum Allowable Operating Rate

For each energy offer segment (price, MW pair), *i* = 1 .. *n* :

Maximum Allowable Operating Rate (\$/hour @ MW) =

{ [(Heat Input i @ MWi) x (Performance Factor) x (Fuel Cost)]
 + A } x (1 + B)

Heat Input = Derived from coefficients or table

Performance Factor = 1.0 or greater

Fuel Cost = Estimated Fuel Cost plus Variance Adder

A = VOM, Emissions and Other Adders

B = Up to 10% Cost Adder

- Energy Offer data entered by Market Seller in Markets Gateway
 - Energy No Load Cost (\$/hour)
 - Incremental Energy Offer segments (price \$/MWh @ MW pairs)
- Operating Range (up to Emergency Maximum MW)
- Bid-Slope (yes/no) or block-loading
- If the last segment's MW < Emergency Max, extra segment is added at { Pr_{max}, Emergency Max }

Bid Production Cost

For each energy offer segment (price, MW pair), *i* = 1 .. *n* :

Bid Production Cost (\$/hour @ MW) =

(Energy No Load) + $\sum_{i=1}^{n} (MW_{i} - MW_{i-1})x(P_{i}) - \frac{1}{2} x UBS x (MW_{i} - MW_{i-1}) x (P_{i} - P_{i-1})$

Energy No Load = Submitted Cost of Operation at 0 MW, in \$/hour

MW = Segment MW, in MW

P = Segment Price, in \$/MWh

UBS = Uses Bid-Slope = 0 for Block-loaded, 1 for Sloped

Segment "zero" = P_1 at 0 MW, always block-loaded

Incremental Offer Screen

For each energy offer segment (price, MW pair), *i* = 1 .. *n* :

Maximum Allowable Incremental Cost (\$/MWh @ MW) =

[(Max. Allowable Oper. Rate_i) – (Bid Production Cost_{i-1})] / ($MW_i - MW_{i-1}$)

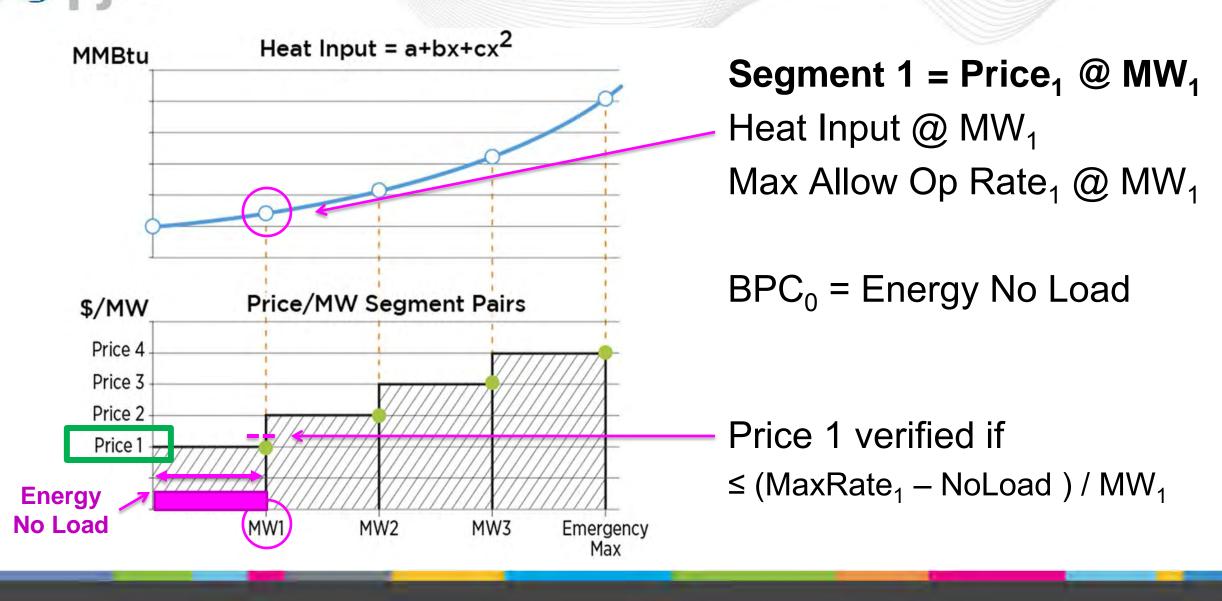
- At each offered MW (up to Emergency Max), calculate the estimated cost (incl. no load) to output at that level from the heat rate data
- The maximum incremental cost of each segment in the energy offer is set by the <u>remaining</u> difference from fuel costs

Segment "zero" bid production cost is the No Load Cost @ 0 MW

Incremental Offer Screen, Long Form

For each energy offer segment (price, MW pair), *i* = 1 .. *n* :

Maximum Allowable Incremental Cost (\$/MWh @ MW) =


@ MW_1 : { MaxRate(MW_1) - [No-Load] } / MW_1

@ MW_2 : { MaxRate(MW₂) – [No-Load + (MW₁ x P₁)] } / (MW₂ – MW₁)

@ MW_3 : { MaxRate(MW₃) – [No-Load + (MW₁ x P₁)

+
$$(MW_2 - MW_1) \times P_1$$

+ $((MW_2 - MW_1) \times (P_2 - P_1) \times S)] / (MW_3 - MW_2)$
UBS = $\frac{1}{2}$ or 1

@ MW_n : { MaxRate(MW_n) – [Bid Production Cost_{n-1}] } / (MW_n – MW_{n-1})

Heat Input = $a+bx+cx^2$ MMBtu Price/MW Segment Pairs \$/MW Price 4 Price 3 Price 2 -Price 1 **No Load** \$/hr Emergency MW1 MW2 MW3 Max

Segment 2 = $Price_2 @ MW_2$ Heat Input @ MW_2 Max Allow Op Rate₂ @ MW_2

 $BPC_{1} = Energy No Load + (Pr_{1} \times MW_{1})$

Price 2 verified if
 ≤ (MaxRate₂ – BPC₁)
 / (MW₂ – MW₁)

Heat Input = $a+bx+cx^2$ MMBtu Price/MW Segment Pairs \$/MW Price 4 Price 3 Price 2 Price 1 No Load \$/hr MW1 Emergency MW₂ MW3 Max

Segment 3 = $Price_3 @ MW_3$ Heat Input @ MW_3 Max Allow Op Rate₃ @ MW_3

 $BPC_2 = BPC_1$ + ($Pr_2 \times (MW_2 - MW_1)$)

Price 3 verified if $\leq (MaxRate_3 - BPC_2)$ $/ (MW_3 - MW_2)$

Heat Input = $a+bx+cx^2$ MMBtu Price/MW Segment Pairs \$/MW Price 4 Price 3 Price 2 Price 1 **No Load** \$/hr MW1 Emergency MW₂ MW3 Max

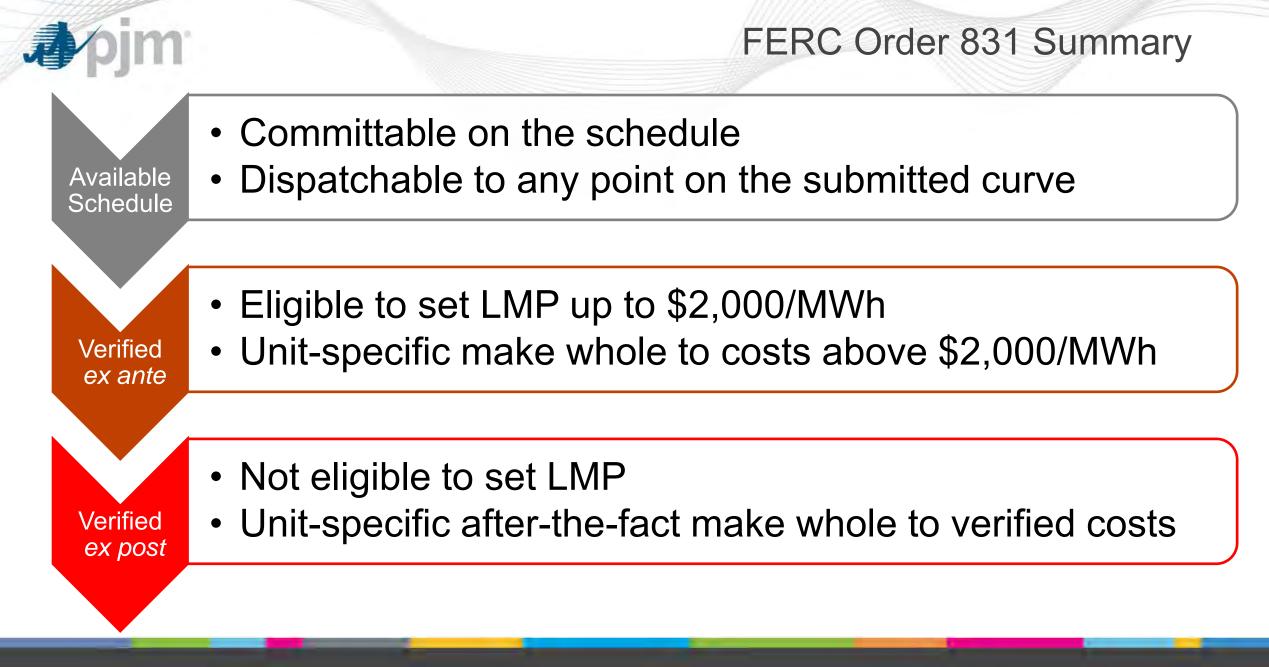
Segment 4 = $Price_4 @ MW_4$ Heat Input @ MW_4 Max Allow Op Rate₄ @ MW_4

 $BPC_3 = BPC_2$ + ($Pr_3 \times (MW_3 - MW_2)$)

Price 4 verified if $\leq (MaxRate_4 - BPC_3)$ $/ (MW_4 - MW_3)$

m

- The Bid Production Cost should align with the Maximum Allowable Operating Rate, since the incremental offer { price, MW } pairs are derived from the heat input curve
 - If any segment of the Incremental Cost (\$/MWh) exceeds
 \$1,000/MW, then the cost offer is subject to verification
 - Schedule is *verified* if all segments pass incremental cost test
- All units with an incremental of \$1,000/MWh or greater are expected to provide documentation *ex post*, regardless of screening success



Verification Process

- PJM will not block any data entry in Markets Gateway
 - Data can be submitted up to 7 days in advance (status quo)
 - Verification will apply to a single market day, as fuel data exists
 - Once verified for a given market day, the offer will remain verified until the next cost update
- Offers that do not pass the automated Verification Process may
 use the Exception Process to request approval
 - Documentation of costs subject to manual review & verification
 - Cost Offer must conform to the approved Fuel Cost Policy

- **J**pjm
 - DA, 06:00-10:30, verification of >\$1,000/MWh cost schedules as new offer data is submitted into Markets Gateway
 - Schedules begin the day as unverified
 - Periodic update of commodity trading data from third party vendor
 - Member can retrieve verification status
 - RT, up to 65 mins before each hour, verification of >\$1,000/MWh cost schedules as new hourly offers are submitted

Cost Offer Verification Summary

- Screening Process = *ex ante* verification of >\$1,000/MWh cost offer
 - Automated Verification w/ best available data
 - Manual Verification w/ Member Submitted evidence
- Exception Process = Exception to the Screening Limits
- Verified Costs = Eligible to set LMP above \$1,000/MWh
- Unit-specific Make Whole > \$2,000/MWh or to *ex post* verified offer
- Unverifiable *ex post* = potential penalty