The report you are reading is published annually by PJM to convey the results of planning studies throughout the previous calendar year and to explain the rationale behind why transmission system upgrades are needed. The discussion in this document of system drivers, reliability criteria violations and upgrades themselves is for reporting purposes to facilitate greater RTEP understanding.

Fundamentally, the Regional Transmission Expansion Plan (RTEP) is that ongoing body of PJM Transmission Expansion Advisory Committee (TEAC) presentation materials and published RTEP Baseline Assessment reports which remains PJM’s authoritative source of RTEP information and data.

• PJM TEAC materials can be accessed online from PJM’s Web site via the following URL link: http://www.pjm.com/committees-and-groups/committees/teac.aspx.

• PJM RTEP Baseline Assessment reports can also be accessed online from PJM’s Web site via the following URL link: http://www.pjm.com/planning/rtep-development/baseline-reports.aspx.

Audience

PJM has crafted this report to explain and emphasize the interrelationship among the following:

- system upgrade drivers (e.g., load growth, generation addition, generation deactivation)
- reliability criteria violations (e.g., thermal transmission constraints, voltage limits)
- system enhancements needed (e.g., new facilities, upgrades to existing facilities)

Readers of this report are encouraged to participate in the ongoing activities of the PJM Transmission Expansion Advisory Committee (TEAC). This forum provides opportunity for stakeholder participation and advice throughout the RTEP process and for remaining apprised of all evolving aspects of PJM’s RTEP – plans and process alike.

Order 890 Compliance

PJM expanded its stakeholder process in 2008 in compliance with FERC’s Order 890 to enhance coordinated, open and transparent planning at both regional and local level. PJM and stakeholders already conduct a compliant planning process filed with the Commission and incorporated in Schedule 6 of the PJM Operating Agreement (OA). Valuable stakeholder discussions culminated in the establishment of three Sub-Regional RTEP Committees – Mid-Atlantic, Western and Southern – commissioned to review proposed upgrades of more local concern.

Each Sub-Regional RTEP Committee increases the opportunity for direct stakeholder participation in the planning process from initial assumption setting stages through review of the planning analyses, violations, and alternative transmission expansions. The Subregional RTEP Committee provides a more local forum for gathering and considering planning issues. Interested parties can access Subregional RTEP Committee planning process information from PJM’s Web site via the following URL links:
• PJM Mid-Atlantic Sub-Regional RTEP Committee: http://www.pjm.com/committees-and-groups/committees/ssrtep-ma.aspx.

• PJM Western Sub-Regional RTEP Committee: http://www.pjm.com/committees-and-groups/committees/ssrtep-w.aspx.

• PJM Southern Sub-Regional RTEP Committee: http://www.pjm.com/committees-and-groups/committees/ssrtep-s.aspx.

Through the activities of these committees, all PJM stakeholders have a forum to raise issues, propose solutions or alternatives and conduct other related discussions. These meetings are open to all stakeholders interested in the issues under consideration.

Scope of Upgrades Discussed

In 2009 alone, the PJM Board approved 420 individual BES upgrades. However, to put reasonable parameters around the scope and length of this report, the upgrades discussed here are generally those of larger scale whose cost exceeds $5 million. A complete list of all approved RTEP upgrades, a brief description of facility and driver as well as current status can be found on PJM’s Web site via the following URL link: http://www.pjm.com/planning/rtep-upgrades-status/construct-status.ashx.

Queued Interconnection Requests

Generation and merchant transmission interconnection requests are a key part of PJM’s RTEP Process. From a power flow modeling perspective, PJM’s RTEP process specifies that planning studies model all generation with a completed System Impact study. Of these generators, only those with executed Interconnection Service Agreements (ISAs) are permitted to back-off an identified transmission constraint. Over ten years experience with queue activity and generation withdrawal rates has demonstrated that, in this manner, PJM’s interconnection process encompasses sound, consistent and reliable planning, minimizing the need for retooling studies that would otherwise be necessitated by those generator interconnection requests that withdraw from the planning process.

For reporting purposes and the queue activity interest of this report audience, please note that PJM has included in many tables statistical information about interconnection request activity through the close of Queue V4, the window for which closed on January 31, 2010.

RTEP Process Information…

This report does not describe the RTEP Process itself in great detail. The reader is directed to a number of online resources, including those noted below, to pursue greater understanding of the RTEP Process. Detailed information on the RTEP Process itself can be found in the following resources, available on PJM’s Web site:

1. The M-14 series of PJM Manuals describe the specific “business rules” under which PJM effects the entire RTEP Process. Specifically, Manual 14B addresses the details associated with the methodologies associated with the planning studies and upgrades derived from them as discussed in this report. PJM Manual 14B, “Regional Planning Process” can be found via the following URL link: http://www.pjm.com/documents/~/media/documents/manuals/m14b.ashx.

2. The PJM Operating Agreement, Schedule 6, codifies the overall provisions under which PJM executes its Regional Transmission Expansion Planning Protocol, more familiarly known (and used throughout this document) as the “PJM RTEP Process.” The PJM Operating Agreement can be found on PJM’s Web site via the following URL link: http://www.pjm.com/documents/agreements/~/media/documents/agreements/oa.ashx.

3. The PJM Open Access Transmission Tariff (OATT) describes the interconnection request process for generating resource interconnection, merchant transmission interconnection as well as specific process provisions to address long-term firm transmission service and Auction Revenue Rights. The PJM OATT can be found via the following URL link: http://www.pjm.com/documents/agreements/~/media/documents/agreements/tariff.ashx.
Preface: What This Document Conveys

Audience

Order 890 Compliance

Scope of Upgrades Discussed

Queued Interconnection Requests

RTEP Process Information

Section 1: Executive Summary

1. **Executive Summary**
 1.0.1 – Approved Upgrades to Enhance System Total $15 Billion
 1.0.2 – 2009 Compliance with NERC Criteria
 1.0.3 – Expansion Planning Drivers
 1.0.4 – PJM Baseline Backbone Facilities
 1.0.5 – 502 Junction - Loudoun 500 kV line (TrAIL)
 1.0.6 – Carson - Suffolk 500 kV line
 1.0.7 – Susquehanna - Roseland 500 kV line
 1.0.8 – Amos - Welton Springs - Kemptown 765 kV line
 1.0.9 – Possum Point - Indian River (MAPP) 500 kV line
 1.0.10 – Branchburg - Roseland - Hudson 500 kV line
 1.0.11 – Reactive Planning
 1.0.12 – Baseline Stability Analysis
 1.0.13 – Operational Performance
 1.0.14 – 2009 Market Efficiency Analysis
 1.0.15 – Interregional Coordination

Section 2: PJM Transmission System Expansion Drivers

2.0: **Transmission Planning = Reliability Planning + Market Efficiency**

2.0.1 – System Description

2.1: **Load Growth Forecasts**

2.1.1 – Methods and Econometrics

2.1.2 – Comparison: 2008 and 2009

2.1.3 – Forecast Trends: 2005 through 2009

2.1.4 – Forecast for 2014 Baseline Analysis

2.2: **Demand Side Response (DSR)**

2.2.1 – DSR as Load Forecast Input

2.2.2 – Demand Response, ILR and Energy Efficiency

2.2.3 – DSR Alternative to System Expansion

2.3: **Generation Interconnection Requests**

2.3.1 – Queue Activity

2.3.2 – Fuel Mix

2.3.3 – Renewables

2.3.4 – Wind-Powered Generating Resources

2.3.5 – Small Generators

2.3.6 – Behind-the-Meter Generation

2.3.7 – Distributed Generation

2.4: **Generator Deactivations**

2.5: **Merchant Transmission Interconnection Requests**
Section 3: PJM's RTEP Process

3.0: RTO Obligations

3.1: RTEP Process Summary Description

3.2: NERC Planning Criteria

3.3: RTEP Methodologies

3.4: Scope of Modeling Impact Parameters

Section 4: 2010 Retool

4.0: Key Results

5.0: Overview

5.1: TrAIL In-Service Date Remains 2011

5.2: EMAAC Deliverability

5.3: MAAC Deliverability

5.4: NERC Category C

Section 5: 2011 Retool Study

5.0: Overview

5.1: TrAIL In-Service Date Re-Confirmed

5.2: Prexy Replacement Upgrades

5.3: Voltage Issues

5.4: Category C Reactive Issues

5.5: Category C Thermal Issues
Section 6: 2012 Retool Study

6.0: Overview
6.0.1 – Summary of Key Modeling Assumptions
6.1: Susquehanna - Lackawanna - Jefferson - Roseland (SR)
6.1.1 – Background
6.1.2 – Confirming 2012 In-Service Date
6.2: Additional Baseline Retool Results

Section 7: PJM 2013 Retool Study

7.0: Overview
7.0.1 – Summary of Key Modeling Assumptions
7.1: Amos - Welton Springs - Kemptown (PATH Line)
7.1.1 – Background
7.1.2 – Retool Results
7.2: MAPP Transmission Line
7.2.1 – Background
7.2.2 – Retool Analysis
7.3: Branchburg - Roseland - Hudson 500 kV Transmission Line
7.3.1 – Background
7.3.2 – Reconfirming Need
7.3.3 – Line Options Studied
7.3.4 – Comparison of Line Option Risk Factors
7.3.5 – Conclusions and Recommendations
7.4: 2013 Retool: NERC Category C

Section 8: PJM 2014 Baseline Analysis

8.0: Introduction
8.0.1 – Scope of Baseline Analysis
8.0.2 – Summary of Key Modeling Assumptions
8.0.3 – Compliance with NERC Criteria
8.0.4 – Thermal Overloads
8.0.5 – Reactive Analysis and Voltage Collapse
8.0.6 – Overview of 2014 Baseline Results
8.1: PATH 765 kV Line: 2014 Need Analysis
8.1.0 – Background
8.1.1 – PATH Need - Thermal Analysis
8.1.2 – PATH Need – Reactive Analysis
8.1.3 – PATH Need Confirmed
8.1.4 – PATH HVDC Conceptual Study
8.2: MAPP Line: 2014 Need Analysis
8.2.0 – Background
8.2.1 – Thermal Analysis
8.2.2 – Reactive Analysis
8.2.3 – Need for MAPP Confirmed
8.3: 15-Year Horizon Results – Long-Term Outlook
8.3.0 – Background
8.3.1 – Long-Term Thermal Analysis
8.4: 2014 Bulk Electric System (BES) Baseline Upgrades
8.4.0 – Overview
8.4.1 – NERC Reliability Criteria Compliance
8.4.2 – BES Upgrades Identified in 2009 RTEP Process
8.4.3 – Stability Assessment
8.5: Operational Performance
8.5.0 – Overview
8.5.1 – Southern PJM High Voltages
8.5.2 – Transient Stability Operational Issues
8.5.3 – Off-Peak Wind Issues
Section 9: Interregional Coordination

9.0: Overview
- **9.0.1 – Interregional Coordination with RTEP Process**
- **9.0.2 – Interregional Planning Drivers**

9.1: Eastern Interconnection Studies
- **9.1.1 – Eastern Interconnection Planning Collaborative (EIPC)**
- **9.1.2 – Eastern Wind Integration and Transmission Study (EWITS)**

9.2: PJM / NYISO Focused Study
- **9.2.1 – Interregional Planning Stakeholder Advisory Committee (IPSAC)**

9.3: PJM / MISO Studies
- **9.3.1 – Southwest (SW) Indiana Study**
- **9.3.2 – Lake Michigan Congestion Study**

9.4: PJM and Systems South
- **9.4.1 – PJM - Duke - TVA Interface**
- **9.4.2 – NC Planning Collaborative Coordination**

Section 10: Market Efficiency Analysis

10.0: Introduction
- **10.0.1 – Simulation Methodology and Assumptions**

10.2: 2009 RTEP Market Efficiency Analysis
- **10.2.1 – Summary of Results**
- **10.2.2 – 2009 and 2012 Study Year Results**
- **10.2.3 – 2015 and 2018 Study Results**

10.3: Market Simulation Model Input Assumptions

Section 11: PJM Sub-Regional RTEP Key Issues

11.0: PJM Sub-Regional RTEP Key Issues
- **11.0.1 – Order 890 Compliance**

Section 12: State RTEP Overviews

12.0 - PJM Overview
- **12.0.1 The PJM System**
- **12.0.2 – Load Growth**
- **12.0.3 – New Generator Interconnection Requests**
- **12.0.4 – PJM RTEP Summaries by Jurisdiction**
- **12.0.5 – State Summaries of Generation Powered by Renewable Fuels**

12.1: Delaware/Delmarva Peninsula RTEP Overview
- **12.1.1 – Load Growth and Existing Generation**
- **12.1.2 – Generation Interconnection Requests**
- **12.1.3 – Anticipated Generation Deactivations**
- **12.1.4 – Merchant Transmission Interconnection Requests**
- **12.1.5 – Transmission Expansion Plans on the Delmarva Peninsula**
- **12.1.6 – Interconnection Requests for Generation Powered by Renewable Fuel Sources**

12.2: Northern Illinois RTEP Overview
- **12.2.1 – Load Growth and Existing Generation**
- **12.2.2 – Generator Interconnection Requests**
- **12.2.3 – Generation Deactivations**
- **12.2.4 – Merchant Transmission Interconnection Requests**
- **12.2.5 – Transmission Expansion Plans in Northern Illinois**
- **12.2.6 – Interconnection Requests for Generation Powered by Renewable Fuel Sources**
12.3: Indiana RTEP Overview
- 12.3.1 – Load Growth and Existing Generation 223
- 12.3.2 – Generator Interconnection 225
- 12.3.3 – Generation Deactivations 230
- 12.3.4 – Merchant Transmission Interconnection Requests 232
- 12.3.5 – Transmission Expansion Plans in Indiana 232
- 12.3.6 – Interconnection Requests for Generation Powered by Renewable Fuel Sources 235

12.4: Eastern Kentucky RTEP Overview
- 12.4.1 – Load Growth and Existing Generations 237
- 12.4.2 – Generator Interconnection Requests 240
- 12.4.3 – Generation Deactivations 240
- 12.4.4 – Merchant Transmission Interconnection Requests 240
- 12.4.5 – Transmission Expansion Plans 240
- 12.4.6 – Interconnection Requests for Generation Powered by Renewable Fuel Sources 240

12.5: Maryland and District of Columbia RTEP Overview
- 12.5.1 – Load Growth and Existing Generation 243
- 12.5.2 – Generator Interconnection Requests 246
- 12.5.3 – Generation Deactivations 249
- 12.5.4 – Merchant Transmission Interconnection Requests 249
- 12.5.5 – Transmission Expansion Plans in Maryland and the District of Columbia 250
- 12.5.6 – Interconnection Requests for Generation Powered by Renewable Fuel Sources 253

12.6: Southwestern Michigan RTEP Overview
- 12.6.1 – Load Growth and Existing Generation 255
- 12.6.2 – Generator Interconnection Requests 258
- 12.6.3 – Generation Deactivations 258
- 12.6.4 – Merchant Transmission Interconnection Requests 258
- 12.6.5 – Transmission Expansion Plans in Southwestern Michigan 259
- 12.6.6 – Interconnection Requests for Generation Powered by Renewable Fuel Sources 259

12.7: New Jersey RTEP Overview
- 12.7.1 – Load Growth and Existing Generation 261
- 12.7.2 – Generator Interconnection Requests 264
- 12.7.3 – Generation Deactivations 269

12.8: Northeastern North Carolina RTEP Overview
- 12.8.1 – Load Growth and Existing Generation 279
- 12.8.2 – Generator Interconnection Requests 282
- 12.8.3 – Generation Deactivations 282
- 12.8.4 – Merchant Transmission Interconnection Requests 282
- 12.8.5 – Transmission Expansion Plans 283
- 12.8.6 – Interconnection Requests for Generation Powered by Renewable Fuel Sources 283

12.9: Ohio RTEP Overview
- 12.9.1 – Load Growth and Existing Generation 285
- 12.9.2 – Generator Interconnection Requests 288
- 12.9.3 – Generation Deactivations 292
- 12.9.4 – Merchant Transmission Interconnection Requests 292
- 12.9.5 – Transmission Expansion Plans in Ohio 293
- 12.9.6 – Interconnection Requests for Generation Powered by Renewable Fuel Sources 296

12.10: Pennsylvania RTEP Overview
- 12.10.1 – Load Growth and Existing Generation 299
- 12.10.2 – Generator Interconnection Requests 302
- 12.10.3 – Generation Deactivations 309
- 12.10.4 – Merchant Transmission Interconnection Requests 311
- 12.10.5 – Transmission Expansion Plans in Pennsylvania 312
- 12.10.6 – Interconnection Requests for Generation Powered by Renewable Fuel Sources 315
12.11: Northeastern Tennessee RTEP Overview
12.11.1 – Load Growth and Existing Generation 319
12.11.2 – Generator Interconnection Requests 320
12.11.3 – Generation Deactivations 320
12.11.4 – Merchant Transmission Interconnection Requests 320
12.11.5 – Transmission Expansion Plans in Northeastern Tennessee 320
12.11.6 – Interconnection Requests for Generation Powered by Renewable Fuel Sources 320

12.12: Virginia RTEP Overview
12.12.1 – Load Growth and Existing Generation 321
12.12.2 – Generator Interconnection Requests 323
12.12.3 – Generation Deactivations 324
12.12.4 – Merchant Transmission Interconnection Requests 326
12.12.5 – Transmission Expansion Plans in Virginia 328
12.12.6 – Interconnection Requests for Generation Powered by Renewable Fuel Sources 332

12.13: West Virginia RTEP Overview
12.13.1 – Load Growth and Existing Generation 335
12.13.2 – Generator Interconnection Requests 337
12.13.3 – Generation Deactivations 338
12.13.4 – Merchant Transmission Interconnection Requests 339
12.13.5 – Transmission Expansion Plans in West Virginia 341
12.13.6 – Interconnection Requests for Generation Powered by Renewable Fuel Sources 342

Section 13: Addressing Long-Term Challenges 347
13.0: Overview 347
13.2: Creating New LDAs 351
13.2.0 – Background 351
13.2.1 – New LDA Development Triggers 351
13.2.2 – Defining New LDA Boundaries 351
13.3: Price Responsive Demand and Smart Grid Technology 353
13.4: FERC Policy Issues 355
13.4.0 – Introduction 355
13.4.1 – Unresolved Cost Allocation Issues 355
13.4.2 – Order No. 890 Compliance Follow-up 355
13.5: Integrating Renewable Resources 357
13.5.0 – Introduction 357
13.5.1 – FERC Technical Conference 357
13.5.2 – Transmission Public Policy 358
13.5.3 – State Based RPS Initiatives 359
13.5.4 – Integration of Load Management and RPS 362
13.6.1 – Assessing Sensitivity to Load Parameters 365
13.6.2 – Assessing Sensitivity to Generation Parameters 365
13.7: Audit Compliance 369

Section 14: Glossary 371