GE Energy Consulting

PJM Renewable Integration Study

Task 3A Part C

Transmission Analysis

Prepared for: PJM Interconnection, LLC.

Prepared by: General Electric International, Inc.

March 31, 2014

Legal Notices

This report was prepared by General Electric International, Inc. (GE) as an account of work sponsored by PJM Interconnection, LLC. (PJM) Neither PJM nor GE, nor any person acting on behalf of either:

- 1. Makes any warranty or representation, expressed or implied, with respect to the use of any information contained in this report, or that the use of any information, apparatus, method, or process disclosed in the report may not infringe privately owned rights.
- 2. Assumes any liabilities with respect to the use of or for damage resulting from the use of any information, apparatus, method, or process disclosed in this report.

Contact Information

This report was prepared by General Electric International, Inc. (GEII); acting through its Energy Consulting group (GE) based in Schenectady, NY, and submitted to PJM Interconnection, LLC. (PJM). Technical and commercial questions and any correspondence concerning this document should be referred to:

Gene Hinkle Manager, Investment Analysis GE Energy Management Energy Consulting 1 River Road Building 53 Schenectady, NY 12345 USA Phone: (518) 385 5447 Fax: (518) 385 5703 gene.hinkle@ge.com

Table of Contents

LE	gal N	IOTICE	ES	П			
Сс	ΝΤΑΟ		ORMATION	Ш			
1	TRAI	12					
	1.1	12					
	1.2	Trai	NSMISSION SYSTEM UPGRADES	12			
	1.3	Syst	rem Model and Analysis Description	13			
	1.4	Sum	mary of Transmission Overlay for all Scenarios	14			
	1.5 TRANSMISSION OVERLAY RESULTS FOR 14% RPS SCENARIO						
	1.6 TRANSMISSION OVERLAY RESULTS FOR 20% SCENARIOS						
	1.7 TRANSMISSION OVERLAY RESULTS FOR 30% SCENARIOS						
	-	1.7.1	Transmission Overlay Results for 30% LOBO Scenario	xxix			
	-	1.7.2	Transmission Overlay Results for 30% LODO Scenario	XXX			
	-	1.7.3	Transmission Overlay Results for 30% HOBO Scenario	xxxi			
	-	1.7.4	Transmission Overlay Results for 30% HSBO Scenario	xxxiii			
	1.8	Trai	NSMISSION OVERLAY APPENDICES	XXXIV			
	-	1.8.1	Appendix A: Geographic Maps for 20% Scenarios	xxxiv			
		1.8.2	Appendix B: Geographic Maps for 30% Scenarios	×li×			

List of Figures

Figure 1-1: Legend for Figure 1-2 through Figure 1-7	
Figure 1-2: 14% RPS Transmission Constraints – ComEd / Western AEP	
Figure 1-3: 14% RPS Transmission Overlay – ComEd / Western AEP	
Figure 1-4: 14% RPS Transmission Constraints – Eastern AEP / ATSI / Dominion	
Figure 1-5: 14% RPS Transmission Overlay – Eastern AEP / ATSI / Dominion	23
Figure 1-6: 14% RPS Transmission Constraints – Mid-Atlantic Region	24
Figure 1-7: 14% RPS Transmission Overlay – Mid-Atlantic Region	25
Figure 1-8: Legend for Geographical Maps	XXXV
Figure 1-9: 20% LOBO Transmission Constraints – ComEd	
Figure 1-10: 20% LOBO Transmission Overlay – ComEd	
Figure 1-11: 20% LOBO Transmission Constraints – AEP	
Figure 1-12: 20% LOBO Transmission Overlay – AEP	
Figure 1-13: 20% LODO Transmission Constraints – ComEd	
Figure 1-14: 20% LODO Transmission Overlay – ComEd	xl
Figure 1-15: 20% LODO Transmission Constraints – Penelec	
Figure 1-16: 20% LODO Transmission Overlay – Penelec	xli
Figure 1-17: 20% HOBO Transmission Constraints – Dominion	xlii
Figure 1-18: 20% HOBO Transmission Overlay – Dominion	xliii
Figure 1-19: 20% HOBO Transmission Constraints – AEP	xliii
Figure 1-20: 20% HOBO Transmission Overlay – AEP	xliv
Figure 1-21: 20% HOBO Transmission Constraints – ComEd	xliv
Figure 1-22: 20% HOBO Transmission Overlay – ComEd	xlv
Figure 1-23: 20% HSBO Transmission Constraints – AEP	xlvi
Figure 1-24: 20% HSBO Transmission Overlay – AEP	xlvii
Figure 1-25: 20% HSBO Transmission Constraints – ComEd	
Figure 1-26: 20% HSBO Transmission Overlay – ComEd	xlviii
Figure 1-27: Legend for Geographical Maps	
Figure 1-28: 30% LOBO Transmission Constraints – ComEd	lii
Figure 1-29: 30% LOBO Transmission Overlay – ComEd	liii
Figure 1-30: 30% LOBO Transmission Constraints – AEP	liv
Figure 1-31: 30% LOBO Transmission Overlay – AEP	lv
Figure 1-32: 30% LOBO Transmission Constraints – Dominion	lvi
Figure 1-33: 30% LOBO Transmission Overlay – Dominion	
Figure 1-34: 30% LOBO Transmission Constraints – Mid-Atlantic Region	lvii
Figure 1-35: 30% LOBO Transmission Overlay – Mid-Atlantic Region	lviii
Figure 1-36: 30% LODO Transmission Constraints – ComEd	lx
Figure 1-37: 30% LODO Transmission Overlay – ComEd	lxi
Figure 1-38: 30% LODO Transmission Constraints – AEP	lxii
Figure 1-39: 30% LODO Transmission Overlay – AEP	
Figure 1-40: 30% LODO Transmission Constraints – Dominion	lxiii
Figure 1-41: 30% LODO Transmission Constraints – Dominion	Ixiv
Figure 1-42: 30% LODO Transmission Constraints – Penelec	Ixiv
Figure 1-43: 30% LODO Transmission Overlay – Penelec	
Figure 1-44: 30% HOBO Transmission Constraints – ComEd	Ixvii
Figure 1-45: 30% HOBO Transmission Overlay – ComEd	Ixviii

Figure 1-46: 30% HOBO Transmission Constraints – Dominion	lxix
Figure 1-47: 30% HOBO Transmission Overlay – Dominion	lxx
Figure 1-48: 30% HOBO Transmission Constraints – Mid-Atlantic Region	lxx
Figure 1-49: 30% HOBO Transmission Overlay – Mid-Atlantic Region	Ixxi
Figure 1-50: 30% HSBO Constraints – ComEd	lxxiii
Figure 1-51: 30% HSBO Transmission Overlay – ComEdI	lxxiv
Figure 1-52: 30% HSBO Transmission Constraints – AEP	.lxxv
Figure 1-53: 30% HSBO Transmission Overlay – AEPI	lxxvi

List of Tables

Table 1-1: Summary of New Transmission Lines and Upgrades for Study Scenarios	
Table 1-2: Transmission Constraints for 14% RPS Scenario	
Table 1-3: Transmission Overlay for 14% RPS Scenario	
Table 1-4: Summary of Transmission Upgrade Miles and Cost for 20% Scenarios	xxvi
Table 1-5: Transmission Constraints for 20% LOBO Scenario	xxvi
Table 1-6: Transmission Overlay for 20% LOBO Scenario	xxvii
Table 1-7: Transmission Constraints for 20% LODO Scenario	xxvii
Table 1-8: Transmission Overlay for 20% LODO Scenario	xxvii
Table 1-9: Transmission Constraints for 20% HOBO Scenario	xxvii
Table 1-10: Transmission Overlay for 20% HOBO Scenario	xxviii
Table 1-11: Transmission Constraints for 20% HSBO Scenario	xxviii
Table 1-12: Transmission Overlay for 20% HSBO Scenario	xxviii
Table 1-13: Summary of Transmission Upgrade Miles and Cost for 30% Scenarios	xxviii
Table 1-14: Transmission Constraints for 30% LOBO Scenario	xxix
Table 1-15: Transmission Overlay for 30% LOBO Scenario	xxx
Table 1-16: Transmission Constraints for 30% LODO Scenario	xxxi
Table 1-17: Transmission Overlay for 30% LODO Scenario	xxxi
Table 1-18: Transmission Constraints for 30% HOBO Scenario	xxxii
Table 1-19: Transmission Overlay for 30% HOBO Scenario	xxxiii
Table 1-20: Transmission Constraints for 30% HSBO Scenario	xxxiv
Table 1-21: Transmission Overlay for 30% HSBO Scenario	xxxiv
Table 1-22: Transmission Constraints for 20% LOBO	xxxv
Table 1-23: Transmission Overlay for 20% LOBO	
Table 1-24: Transmission Constraints for 20% LODO Scenario	
Table 1-25: Transmission Overlay for 20% LODO Scenario	
Table 1-26: Transmission Constraints for 20% HOBO Scenario	
Table 1-27: Transmission Overlay for 20% HOBO Scenario	
Table 1-28: Transmission Constraints for 20% HSBO Scenario	
Table 1-29: Transmission Overlay for 20% HSBO Scenario	
Table 1-30: Transmission Constraints for 30% LOBO Scenario	
Table 1-31: Transmission Overlay for 30% LOBO Scenario	
Table 1-32: Transmission Constraints for 30% LODO Scenario	
Table 1-33: Transmission Overlay for 30% LODO Scenario	
Table 1-34: Transmission Constraints for 30% HOBO Scenario	
Table 1-35: Transmission Overlay for 30% HOBO Scenario	
Table 1-36: Transmission Constraints for 30% HSBO Scenario	
Table 1-37: Transmission Overlay for 30% HSBO Scenario	lxxii

Acronyms and Nomenclatures

- 2% BAU 2% Renewable Penetration Business-As-Usual Scenario
- 14% RPS 14% Renewable Penetration RPS Scenario
- 20% LOBO 20% Renewable Penetration Low Offshore Best Onshore Scenario
- 20% LODO 20% Renewable Penetration Low Offshore Dispersed Onshore Scenario
- 20% HOBO 20% Renewable Penetration High Offshore Best Onshore Scenario
- 20% HSBO 20% Renewable Penetration High Solar Best Onshore Scenario
- 30% LOBO 30% Renewable Penetration Low Offshore Best Onshore Scenario
- 30% LODO 30% Renewable Penetration Low Offshore Dispersed Onshore Scenario
- 30% HOBO 30% Renewable Penetration High Offshore Best Onshore Scenario
- 30% HSBO 30% Renewable Penetration High Solar Best Onshore Scenario
- AEPS Alternative Energy Portfolio Standard
- AGC Automatic Generation Control
- AWS/AWST AWS Truepower
- Bbl. Barrel
- BAA Balancing Area Authority
- BAU Business as Usual
- BTU British Thermal Unit
- CAISO California Independent System Operator
- CC/CCGT Combined Cycle Gas Turbine
- CEMS Continuous Emissions Monitoring Systems
- CF Capacity Factor
- CO2 Carbon Dioxide
- CV Capacity Value
- DA Day-Ahead
- DR Demand Response
- DSM Demand Side Management
- El Eastern Interconnection

EIPC	Eastern Interconnection Planning Collaborative							
ELCC	Effective Load Carrying Capability							
ERCOT	Electricity Reliability Council of Texas							
EST	Eastern Standard Time							
EUE	Expected Un-served Energy							
EWITS	Eastern Wind Integration and Transmission Study							
FERC	Federal Energy Regulatory Commission							
FLHR	Full Load Heat Rate							
FSA	PJM Facilities Study Agreement							
GE	General Electric International, Inc. / GE Energy Consulting							
GE MAPS	GE's "Multi Area Production Simulation" model							
GE MARS	GE's "Multi Area Reliability Simulation" model							
GT	Gas Turbine							
GW	Gigawatt							
GWh	Gigawatt Hour							
HA	Hour Ahead							
HSBO	High Solar Best Onshore Scenarios							
НОВО	High Offshore Best Onshore Scenarios							
HR	Heat Rate							
HVAC	Heating, Ventilation, and Air Conditioning							
IPP	Independent Power Producers							
IRP	Integrated Resource Planning							
ISA	PJM Interconnection Service Agreement							
ISO-NE	Independent System Operator of New England							
kV	kilovolt							
kW	kilowatt							
kWh	kilowatt-hour							
lbs	Pounds (British Imperial Mass Unit)							
LDC	Load Duration Curve							

LM	Intertek AIM's Loads Model ™ tool							
LMP	Locational Marginal Prices							
LNR	Load Net of Renewable Energy							
LOBO	Low Offshore Best Onshore Scenarios							
LODO	Low Offshore Dispersed Onshore Scenarios							
LOLE	Loss of Load Expectation							
MAE	Mean-Absolute Error							
MAPP	Mid-Atlantic Power Pathway							
MMBtu	Millions of BTU							
MVA	Megavolt Ampere							
MW	Megawatts							
MWh	Megawatt Hour							
NERC	North American Electric Reliability Corporation							
NOx	Nitrogen Oxides							
NREL	National Renewable Energy Laboratory							
NWP	"Numerical Weather Prediction" model							
0&M	Operational & Maintenance							
PATH	Potomac Appalachian Transmission Highline							
PJM	PJM Interconnection, LLC.							
PPA	Power Purchase Agreement							
PRIS	PJM Renewable Integration Study							
PRISM	Probabilistic Reliability Index Study Model							
PROBE	"Portfolio Ownership & Bid Evaluation Model" of PowerGEM							
PSH	Pumped Storage Hydro							
PV	Photovoltaic							
REC	Renewable Energy Credit							
Rest of El	Rest of Eastern Interconnection							
RPS	Renewable Portfolio Standard							
RT	Real Time							

RTEP	Regional Transmission Expansion Plan		
SC/SCGT	Simple Cycle Gas Turbine		
SCUC/EC Security Constrained Unit Commitment / Economic Dispatch			
SOx	Sulfur Oxides		
ST	Steam Turbine		
TARA	"Transmission Adequacy and Reliability Assessment" software of PowerGEM		
UCT	Coordinated Universal Time		
VOC	Variable Operating Cost		
WI	Western Interconnection		

1 Transmission Analysis

1.1 Purpose of Transmission Overlay Analysis

The purpose of this phase of the study was for PowerGEM to create a transmission overlay that resolved the most significant reliability and congestion issues for each renewable scenario. The overlay was developed based on two separate drivers. First a transmission overlay was created to resolve any reliability issues caused by the addition of the renewable resources. A congestion study was then performed using this overlay to determine if any areas of the PJM system had significant congestion. An additional transmission overlay was then created to address any flowgates resulting in congestion greater than a certain threshold. The final transmission overlay was the combination of the reliability driven and congestion driven overlays for each scenario.

While transmission overlays identified here resolved the most significant reliability and congestion issues for each scenario, some potentially significant transmission costs were not within the scope of this study, e.g., 1) generator interconnection costs (wind and solar units were located at nearest EHV bus), 2) upgrades to resolve overloads at voltage levels below 230kV, and 3) upgrades needed to resolve voltage violations. Also, there is still significant congestion remaining in some scenarios (up to \$6.3B/year).

1.2 Transmission System Upgrades

The transmission model was built upon the 2016 and 2017 Regional Transmission Expansion Plan (RTEP) models provided by PJM. New lines and other transmission upgrades were added to the transmission models for each study scenario to serve the increased load and generation resources. Given that the output of wind and solar resources inherently varies by time of day and season of year, the traditional transmission expansion planning methods were augmented by production cost analysis to ensure adequate transmission capacity without overbuilding. Some wind plants and thermal plants share common transmission corridors, and since wind plants are not dispatchable, it is not appropriate to size those corridors to accommodate simultaneous maximum output from both wind and thermal plants.

The transmission expansion process involved the following steps:

• Security-constrained optimal power flow analysis to identify transmission paths that are overloaded under contingency conditions and cannot be relieved by adjusting the dispatch.

- Generator deliverability analysis with wind and solar plant loaded to 100% of capacity value, to identify reliability problems that required transmission upgrades.
- Generator deliverability analysis with wind and solar plant loaded to 100% of energy value, to identify flowgates that could be overloaded and therefore should be monitored in production cost analysis.
- Production cost analysis to quantify annual transmission path utilization and congestion, and to identify paths with excessive congestion.

These steps were performed iteratively on each scenario to design a set of transmission upgrades that would achieve deliverability and reliability objectives without excessive congestion. Transmission capacity was increased until the largest contribution to congestion costs by a constrained element between two nodes with highest and lowest average annual LMP in the system was \$5/MWh, averaged across the year.

1.3 System Model and Analysis Description

PJM provided PowerGEM a 2017 Regional Transmission Expansion Plan (RTEP) summer model to be used for peak load reliability analysis and a 2016 RTEP model with load levels adjusted to a 2026 60% load level to be used for light load reliability analysis. For both models, PJM also provided a single contingency file that matched the corresponding load flow model.

The following modifications were subsequently made to these models at PJM's request to better align the models with more recent transmission topology and generation portfolio changes.

- Removed the PATH backbone project
- Removed the MAPP backbone project
- Modeled generation offline based on retirement announcements in late 2011 / early 2012

For the peak load study, the generator deliverability analysis was completed on the 2017 RTEP model with the results extrapolated to the year 2026. All facilities greater than 230 kV were monitored and overloads were based on pre-contingency and single contingency loadings with the ratings set to the conductor rating. Solar and wind generation was modeled at the capacity values at each site as determined by GE. In general, the average capacity factor for wind was around 38% and solar was 18%. Modeling the solar and wind generation at individual sites as opposed to netting against load provides a more realistic representation since netting against load has the effect of missing the transmission impacts associated with specific MW injections.

For the light load study, the following generation assumptions were applied by PowerGEM in the 2016 RTEP model with a 2026 60% load level:

- Wind generation was modeled at 70% of nameplate with fixed output
- Solar generation was modeled at the capacity value as determined by GE for each individual site the average solar capacity factor was 18%.
- Nuclear generation was modeled at 100% of nameplate and must run
- Coal was modeled at Pmin with availability to run up to Pmax.
- All natural gas generation and CTs were modeled as offline with the availability to run up to Pmax

The system was studied using a security constrained optimal power flow where generation was allowed to move (within the limits imposed in the set-up described previously) to relieve any pre-contingency or single contingency overloads. Any overloads that could not be relieved via generation dispatch were considered an issue and a transmission overlay was developed to address the problem. Economics were not a consideration for the light load reliability evaluation. The economic input for the transmission overlay was provided via the GE MAPS simulations.

After the reliability driven transmission overlay was developed based on the identified peak and light load overloads, both the peak and light load studies were redone to assure no significant overloads remained.

PowerGEM also took the 2017 RTEP model with transmission overlay and performed a generator deliverability analysis with wind and solar modeled at 100% of nameplate to develop additional flowgates to be used in the MAPS simulations. All flowgates loaded greater than 75% were provided to GE to include in the GE MAPS simulations. In situations where a monitored facility was identified for numerous contingencies, the flowgate resulting in the highest loading was selected.

GE performed a GE MAPS simulation for each scenario with the transmission overlays that were developed to resolve all reliability problems. GE MAPS identified congestions that resulted in \$5/MWh price difference between the highest generation bus LMP and the lowest generation bus LMP, which were then passed to PowerGEM and the transmission overlay was further upgraded to mitigate the identified congestion issues.

1.4 Summary of Transmission Overlay for all Scenarios

Table 1-1 provides a summary of the circuit miles, a planning level cost estimate for the transmission overlays and the total remaining congestion for each scenario. All planning

level cost estimates were provided by PJM and were similar to those used in the Eastern Interconnection Planning Collaborative Phase II Report.

In general, when developing the transmission overlay an approach was taken to minimize the cost of transmission upgrades that would be required. If a constrained circuit had a low rating for the voltage class (such as 450 MVA at 230 kV or 900 MVA at 345 kV) then reconductoring was assumed as the upgrade. If a constrained circuit had a rating that was on the high end for the voltage class (such as 1000 MVA at 230 kV or 1800 MVA at 345 kV) a second parallel circuit was assumed as the upgrade. When numerous 345 kV constraints were in the same geographical area, a new 765 kV circuit was considered as the upgrade. If one new 765 kV circuit did not resolve all of the issues in the area then a second 765 kV was added. The goal of this study was not to develop an optimized transmission overlay but rather to develop a transmission overlay that would be indicative of what would be required to support the projected renewable resource additions for each scenario.

The costs in Table 1-1 do not include any direct connection facilities and the associated costs needed to interconnect the renewable resources. This includes, in the case of offshore wind projects, that no transmission component is included to deliver the power from the off shore site to the point of interconnection since this is a direct connection facility. Also, Table 1-1 only includes system upgrades to resolve thermal overloads on facilities greater than 230 kV. No voltage or stability analysis was performed.

Scenario	765 kV New Lines (Miles)	765 kV Upgrades (Miles)	500 kV New Lines (Miles)	500 kV Upgrades (Miles)	345 kV New Lines (Miles)	345 kV Upgrades (Miles)	230 kV New Lines (Miles)	230 kV Upgrades (Miles)	Total (Miles)	Total Cost (Billion)	Total Congestion Cost (Billion)
2% BAU	0	0	0	0	0	0	0	0	0	\$0	\$1.9
14% RPS	260	0	42	61	352	35	0	4	754	\$3.7	\$4.0
20% Low Offshore Best Onshore	260	0	42	61	416	122	0	4	905	\$4.1	\$4.0
20% Low Offshore Dispersed Onshore	260	0	42	61	373	35	0	49	820	\$3.8	\$4.9
20% High Offshore Best Onshore	260	0	112	61	363	122	17	4	939	\$4.4	\$4.3
20% High Solar Best Onshore	260	0	42	61	365	122	0	4	854	\$3.9	\$3.3
30% Low Offshore Best Onshore	1800	0	42	61	796	129	44	74	2946	\$13.7	\$5.2
30% Low Offshore Dispersed Onshore	430	0	42	61	384	166	44	55	1182	\$5.0	\$6.3
30% High Offshore Best Onshore	1220	0	223	105	424	35	14	29	2050	\$10.9	\$5.3
30% High Solar Best Onshore	1090	0	42	61	386	122	4	4	1709	\$8	\$5.6

General observations concerning the transmission upgrades include:

- Similar amounts of transmission upgrades are required for the 14% RPS Scenario and all the 20% scenarios.
- The 30% scenarios have significant differences in the levels of transmission upgrades required.
- The 30% LOBO scenario required the most transmission upgrades. This scenario has a huge concentration of wind resources in Illinois and Indiana. Increased transmission capacity is required to deliver that wind energy from the wind-rich region to the major PJM load centers.
- The 30% HOBO has a mix of offshore and onshore wind resources. The onshore wind resources are mostly located in Illinois, Indiana and Ohio, and require transmission upgrades to deliver that energy to load centers. Much of the offshore wind is in North Carolina, Virginia and New Jersey, and they also require new transmission to connect to major load centers. However, the overall transmission requirement is lower than the 30% LOBO case which has more wind in western PJM.
- The 30% LODO has wind resources spread more evenly across the PJM footprint, and therefore requires significantly fewer transmission upgrades.
- For this study, solar resources were assumed to be mostly in large population centered, in and surrounding major cities. Thus, transmission upgrades for the 30% HSBO scenario were lower than the scenarios with wind resources at the best onshore and offshore sites, which are remotely located from load centers.

Congestion costs for each scenario are summarized in the table.

1.5 Transmission Overlay Results for 14% RPS Scenario

The transmission constraints driving the transmission overlay for the 14% RPS scenario are shown in Table 1-2 and the transmission overlay to resolve the constraints is shown in Table 1-3. Figure 1-2 through Figure 1-7 illustrate the constraints and corresponding transmission overlays graphically and Figure 1-1 is a legend for the geographic maps.

The estimated cost of the transmission overlay for the 14% RPS scenario is \$3.7 billion and involved more than 750 miles of new and upgraded transmission. About 71% (\$2.6 billion) of the transmission overlay was needed to provide an outlet for 20 GW of western wind projects in ComEd and AEP to eastern load centers. Another 18% (\$0.7 billion) was needed to provide an outlet for 4 GW of offshore wind along the NJ, DE, MD and VA coast. The remaining 11% of transmission upgrades were dispersed throughout the PJM footprint.

The 14% RPS transmission overlay was used as the starting point transmission model for all 20% and 30% scenarios. Expanded transmission overlays were developed for the 20% and 30% scenarios based on any identified reliability and congestion issues in those models.

Transmission Constraints
Jacksons Ferry – Antioch 500 kV
Cloverdale – Lexington 500 kV
Quad Cities – Rock Creek 345 kV
Loretto – Pontiac 345 kV
Braidwood – East Frankfort 345 kV
La Salle – Plano 345 kV
Plano – Electric Jct. 345 kV
Dresden – Elwood 345 kV
Powerton – Goodings Grove 345 kV
Cherry Valley – Silver Lake 345 kV
Byron – Cherry Valley 345 kV
Lee County – Byron 345 kV
Lee County – Nelson 345 kV
Cordova – Nelson 345 kV
Dumont – Stillwell 345 kV
Breed – Wheatland 345 kV
Keystone – Sorenson 345 kV
Allen – Robinson 345 kV
Nelson – Electric Jct. 345 kV
Olive – Green Acres 345 kV
Kammer – West Bellaire 345 kV
South Canton – Star 345 kV
Johnstown – Bear Rock – Altoona 230 kV
Milford – Steele 230 kV
Milford – Cedar Creek 230 kV
Cedar Creek – Red Lion 230 kV

Table 1-2: Transmission Constraints for 14% RPS Scenario

Transmission Overlay Due to Reliability	
Two Red Lion – Cedar Creek 500 kV	
2 nd South Canton – Star 345 kV	
2 nd Kammer – West Bellaire 345 kV	
2 nd Allen – Robinson Park 345 kV	
3 rd Keystone – Sorenson 345 kV	
3 rd Byron – Cherry Valley 345 kV	
3 rd Plano – Electric Jct. 345 kV	
Lee County - Plano 765 kV	
La Salle – Plano 765 kV	
La Salle – Powerton 345 kV	
La Salle – Pontiac 345 kV	
Transmission Overlay Due to Congestion	
2nd Lee County - Plano 765 kV	
Quad Cities – Lee County 345 kV	
2 nd Stillwell – Dumont 345 kV	owners.
2 nd Stillwell – Dumont 345 kV Plano – Wilton Center 765 kV	
Plano – Wilton Center 765 kV	

Plano – Wilton Center 765 kV 2 nd Cherry – Silver Lake 345 kV	
Plano – Wilton Center 765 kV 2 nd Cherry – Silver Lake 345 kV 2 nd Wilton Center – Dumont 765 kV	
Plano – Wilton Center 765 kV 2 nd Cherry – Silver Lake 345 kV 2 nd Wilton Center – Dumont 765 kV Reconductor Cloverdale – Lexington 500 kV	
Plano – Wilton Center 765 kV 2 nd Cherry – Silver Lake 345 kV 2 nd Wilton Center – Dumont 765 kV Reconductor Cloverdale – Lexington 500 kV Replace Cloverdale 500/345 kV transformers	

Table 1-3: Transmission Overlay	y for 14% RPS Scenario
---------------------------------	------------------------

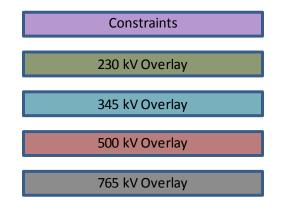


Figure 1-1: Legend for Figure 1-2 through Figure 1-7

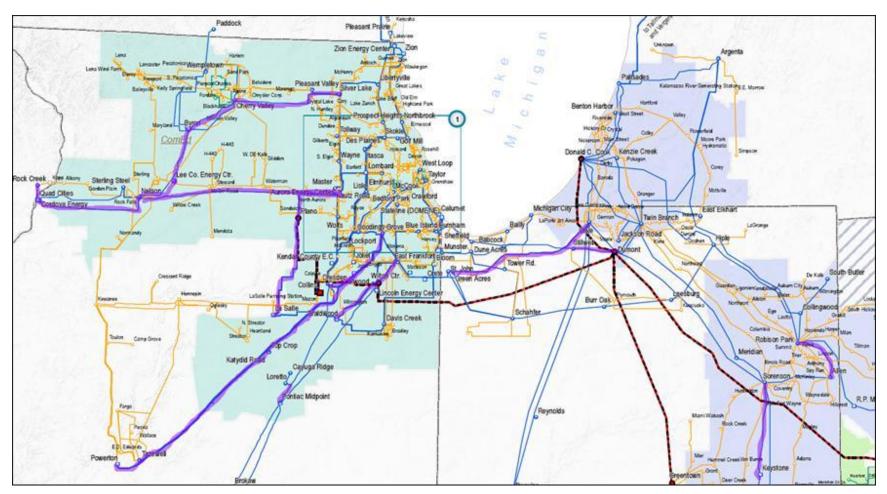


Figure 1-2: 14% RPS Transmission Constraints – ComEd / Western AEP

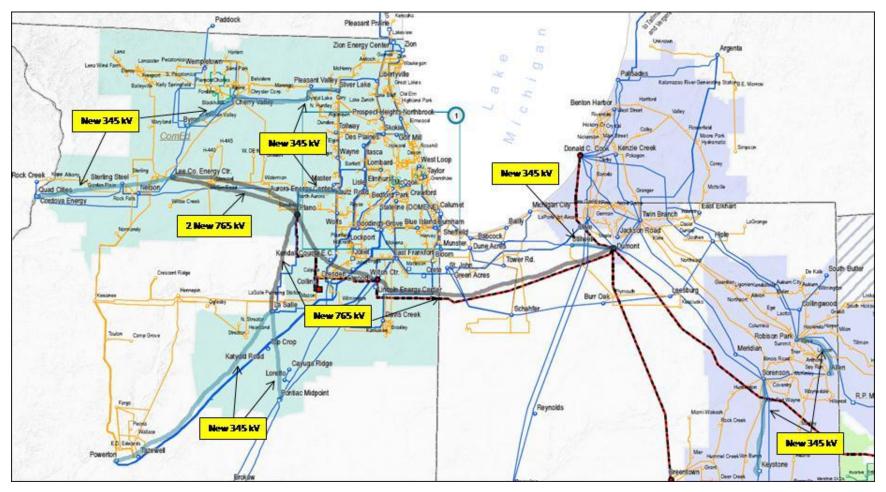


Figure 1-3: 14% RPS Transmission Overlay – ComEd / Western AEP

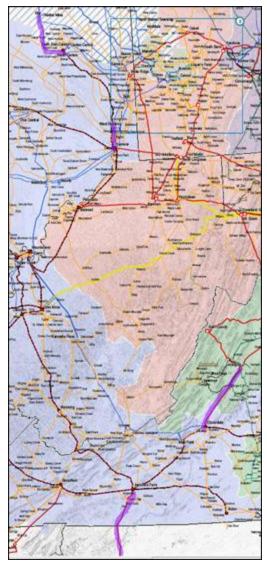


Figure 1-4: 14% RPS Transmission Constraints – Eastern AEP / ATSI / Dominion



Figure 1-5: 14% RPS Transmission Overlay – Eastern AEP / ATSI / Dominion

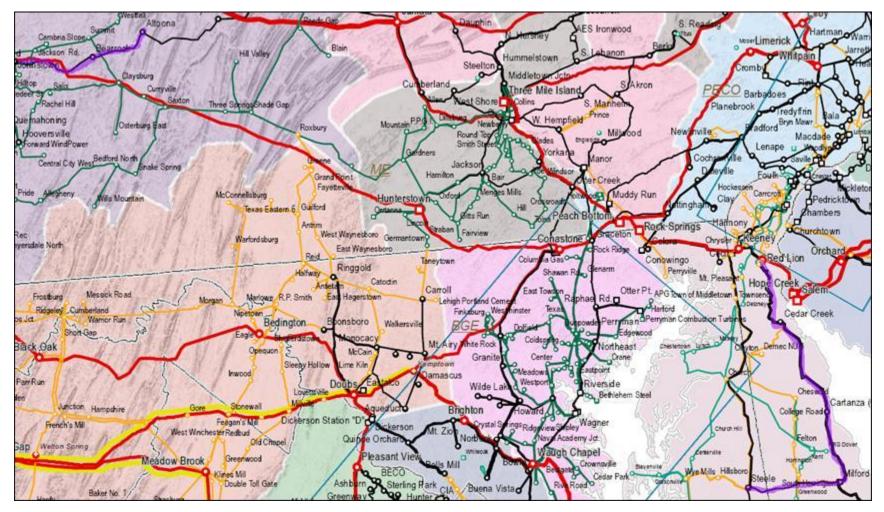


Figure 1-6: 14% RPS Transmission Constraints – Mid-Atlantic Region

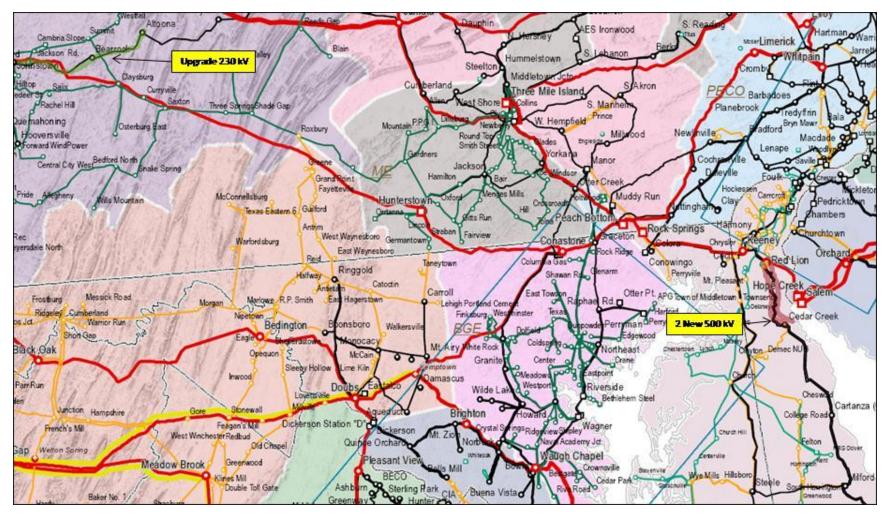


Figure 1-7: 14% RPS Transmission Overlay – Mid-Atlantic Region

1.6 Transmission Overlay Results for 20% Scenarios

The transmission overlay estimated cost and miles of new and upgraded transmission for the four 20% scenarios are shown in Table 1-4.

Scenario	Total Miles of New and Upgraded Transmission	Total Cost (Billion)
20% Low Offshore Best Onshore	905	\$4.1
20% Low Offshore Dispersed Onshore	820	\$3.8
20% High Offshore Best Onshore	939	\$4.4
20% High Solar Best Onshore	854	\$3.9

Table 1-4: Summary of Transmission Upgrade Miles and Cost for 20% Scenarios

Total upgrade costs ranged from \$3.8 billion to \$4.4 billion. The range in upgrade costs and total upgrade expenditure for the 20% scenarios was much less than the 30% scenarios. This was primarily because the renewable resource additions between the 14% RPS scenario and the 20% scenarios were significantly less than the 30% scenarios and therefore the 20% scenarios could use some of the headroom provided by the 14% RPS overlay. Table 1-5 through Table 1-12 include the transmission constraints and overlays for the 20% scenarios. Appendix A of this section contains the geographic maps for the 20% scenarios.

Table 1-5: Transmission Constraints for 20% LOBO Scenario

Dresden – Elwood 345 kV	
Brokaw - Pontiac 345 kV	
Quad - Sub 91 345 kV	
Plano 765/345 kV	
Quad - Rock Cities 345 kV	
Kanawha River – Matt Funk 345 kV	
E. Frankfort – Crete 345 kV	

Transmission Overlay Due to Reliability	
2nd Dresden – Elwood 345 kV 2nd Brokaw - Pontiac 345 kV	
Transmission Overlay Due to Congestion	
2nd Quad - Sub 91 345 kV	
2nd Quad - Rock Cities 345 kV	
Reconductor Kanawha R. – M. Funk 345 kV	
2nd E. Frankfort – Crete 345 kV	
New Plano 765/345 kV	

Table 1-6: Transmission Overlay for 20% LOBO Scenario

Table 1-7: Transmission Constraints for 20% LODO Scenario

Byron - Cherry Valley 345 kV	
Valley 500/230 kV	
Altoona – Raystown 230 kV	
Raystown – Lewistown 230 kV	

Table 1-8: Transmission Overlay for 20% LODO Scenario

Transmission Overlay Due to Congestion	
2nd Byron - Cherry Valley 345 kV	
Replace Valley 500/230 kV	
Reconductor Altoona – Raystown 230 kV	
Reconductor Raystown – Lewistown 230 kV	

Table 1-9: Transmission Constraints for 20% HOBO Scenario

Fentress – Thrasher 230 kV	
Fentress – Landstown 230 kV	
Fentress 500/230 kV	
Thrasher - Huntsman 230 kV	
Huntsman - Yadkin 230 kV	
Shawboro - Eliz CT 230 kV	
TMI 500/230 kV	
Everetts - Greenville 230 kV	
Quad - Sub 91 345 kV	
Kanawha River – Matt Funk 345 kV	
Plano 765/345 kV	

Transmission Overlay Due to Reliability		
2 nd Fentress – Thrasher 230 kV		
2 nd Fentress – Landstown 230 kV		
Replace Fentress 500/230 kV		
New Fentress - Carson 500 kV		
2nd TMI 500/230 kV		
Transmission Overlay Due to Congestion		
2 ^{na} Everetts – Greenville 230 kV		
2nd Quad - Sub 91 345 kV		
Reconductor Kanawha R. – M. Funk 345 kV		
New Plano 765/345 kV		

Table 1-11: Transmission Constraints for 20% HSBO Scenario

Plano 765/345 kV	
Kanawha River – Matt Funk 345 kV	
E. Frankfort – Crete 345 kV	

Table 1-12: Transmission Overlay for 20% HSBO Scenario

Transmission Overlay Due to Congestion	
New Plano 765/345 kV	
Reconductor Kanawha R. – M. Funk 345 kV	
2nd E. Frankfort – Crete 345 kV	

1.7 Transmission Overlay Results for 30% Scenarios

The transmission overlay estimated cost and miles of new and upgraded transmission for the four 30% scenarios are shown in Table 1-13.

Scenario	Total Miles of New and Upgraded Transmission	Total Cost (Billion)
30% Low Offshore Best Onshore	2946	\$13.7
30% Low Offshore Dispersed Onshore	1182	\$5.0
30% High Offshore Best Onshore	2050	\$10.9
30% High Solar Best Onshore	1709	\$8.0

Table 1-13: Summary of Transmission Upgrade Miles and Cost for 30% Scenarios

Total upgrade costs range from \$5 billion to \$13.7 billion with the higher upgrade costs required for the scenarios with the more concentrated wind generation profiles. For example, the highest upgrade costs were for the 30% Low Offshore Best Sites Onshore scenario which had 54 GW of wind generation added in Illinois and Indiana.

Additional information for each 30% scenario is contained in the following sections. Appendix B of this section contains the geographic maps for the 30% scenarios.

1.7.1 Transmission Overlay Results for 30% LOBO Scenario

As previously mentioned, the 30% LOBO scenario had the most expensive upgrade cost at \$13.7 billion. This is primarily due to a high concentration of wind projects (54 GW) in Illinois and Indiana which resulted in extensive amounts of new 765 kV and 345 kV transmission circuits (\$11.7 billion) which were needed to provide an outlet for the renewable generation. The transmission constraints driving the transmission overlay for the 30% LOBO scenario are shown in Table 1-14and the transmission overlay to resolve the constraints is shown in Table 1-15.

Plano – Collins 765 kV	Conastone - Emory Grove 230 kV
Collins – Wilton Center 765 kV	Glade - Warren 230 kV
Wilton Center – Dumont 765 kV	Seward - Johnstown 230 kV
Marysville – Kammer 765 kV	Seward 230/115 kV
Mountaineer – Belmont 765 kV	Homer City 345/230 kV
Dresden – Elwood 345 kV	Watercure - Homer City 345 kV
Pontiac – Dresden 345 kV	Pontiac 765/345 kV
Pontiac – Wilton Center 345 kV	La Salle 765/345 kV
Lee County – Nelson 345 kV	Breed - Casey 345 kV
Dresden – Electric Jct. 345 kV	Jefferson 765/345 kV
E. Frankfort – Crete 345 kV	Pleasant View - Ashburn 230 kV
Crete – St. John 345 kV	Kammer 765/500 kV
Reynolds – Olive 345 kV	Fentress 500/230 kV
Stillwell – Dumont 345 kV	Bayshore - Monroe 345 kV
Munster – Burnham 345 kV	Convoy - R60 345 kV
Many 345 kV circuit in AEP	Bremo - Powhatan 230 kV
Many 345 kV circuits in ComEd	Everetts - Greenville 230 kV
Quad – Sub 91 345 kV	Pleasant View 500/230 kV
Fentress – Thrasher 230 kV	Chesterfield - Tyler 230 kV
Fentress – Landstown 230 kV	Person - Halifax 230 kV
Valley 500/230 kV	Powhatan - Judes 230 kV
Kanawha River – Matt Funk 345 kV	Zion - Pleasant Prairie 345 kV
New Freedom - Monroe 230 kV	

Transmission Overlay Due to Reliability	Transmission Overlay Due to Congestion
Quad Cities – La Salle 765 kV	3rd Seward 230/115 kV
Two La Salle – Pontiac 765 kV	Replace Homer City 345/230 kV
Two Pontiac – Greentown 765 kV	2nd Watercure - Homer City 345 kV
Two Greentown – Vassell 765 kV	New Pontiac 765/345 kV
Two New Vassell – Star 765 kV	New La Salle 765/345 kV
Star – Keystone 765 kV	2nd Breed - Casey 345 kV
Star – S. Canton 765 kV	New Jefferson 765/345 kV
Pontiac – Sullivan 765 kV	Reconductor PI. View - Ashburn 230 kV
Sullivan – Jefferson 765 kV	New Kammer 765/550 kV
Jefferson – Belmont 765 kV	Replace Fentress 500/230 kV
2 nd Lee County – Nelson 345 kV	2nd Eugene - Bunsonville 345 kV
2 nd Reynolds – Olive 345 kV	2nd T94A - Palisades 345 kV
2 nd Quad Cities – Rock Creek 345 kV	2nd Bayshore - Monroe 345 kV
2 nd Marysville – Hyatt 345 kV	2nd Olive - Dumont 345 kV
	2nd Brokaw - Pontiac 345 kV
	Reconductor Convoy - R60 345 kV
	2 nd Everetts – Greenville 230 kV
	2nd Pleasant View 500/230 kV
	Reconductor Chesterfield - Tyler 230 kV
	Reconductor Person - Halifax 230 kV
	Reconductor Powhatan - Judes 230 kV
	2nd Zion - Pleasant Prairie 345 kV
	2 nd Quad – Sub 91 345 kV
	2 nd Fentress – Thrasher 230 kV
	2 nd Fentress – Landstown 230 kV
	Replace Valley 500/230 kV
	Reconductor Kanawha R. – M. Funk 345 kV
	2nd New Freedom - Monroe 230 kV
	3rd Conastone - Emory Grove 230 kV
	Reconductor Glade - Warren 230 kV
	Reconductor Seward - Johnstown 230 kV

Table 1-15: Transmission Overlay for 30% LOBO Scenario

1.7.2 Transmission Overlay Results for 30% LODO Scenario

The 30% LODO scenario had the lowest transmission upgrade costs of the 30% scenarios primarily because the renewable resources were more distributed throughout the PJM footprint allowed the use of existing transmission headroom in certain areas without additional transmission upgrades. The transmission constraints driving the transmission overlay for the 30% LODO scenario are shown in Table 1-16 and the transmission overlay to resolve the constraints is shown in Table 1-17.

Dresden – Elwood 345 kV
Pontiac – Wilton Center 345 kV
La Salle – Plano 345 kV
E. Frankfort – Braidwood 345 kV
Plano – Electric Jct. 345 kV
Marysville – Hyatt 345 kV
Pearson – Halifax 230 kV
Clover – Halifax 230 kV
Altoona – Raystown 230 kV
Raystown – Lewistown 230 kV
Quad – Sub 91 345 kV
Everetts – Greenville 230 kV
Fentress – Thrasher 230 kV
Fentress – Landstown 230 kV
Valley 500/230 kV
Kanawha River – Matt Funk 345 kV
Davis Besse – Beaver 345 kV

Table 1-16: Transmission Constraints for 30% LODO Scenario

Table 1-17: Transmission Overlay for 30% LODO Scenario

Transmission Overlay Due to Reliability
LaSalle – Pontiac 765 kV
Two Pontiac 765/345 kV
2 nd Marysville – Hyatt 345 kV
2 nd Pearson – Halifax 230 kV
Pontiac – Greentown 765 kV
2 nd Clover – Halifax 230 kV
Transmission Overlay Due to Congestion
Reconductor Altoona – Raystown 230 kV
Reconductor Raystown – Lewistown 230 kV
2 nd Quad – Sub 91 345 kV
2 nd Everetts – Greenville 230 kV
2 nd Fentress – Thrasher 230 kV
2 nd Fentress – Landstown 230 kV
Replace Valley 500/230 kV
Reconductor Kanawha R. – M. Funk 345 kV
Reconductor Davis Besse – Beaver 345 kV

1.7.3 Transmission Overlay Results for 30% HOBO Scenario

The 30% HOBO scenario had a total of 38 GW of offshore wind along the NJ, DE, MD and VA coast which resulted in significant transmission build out in Dominion (\$5.2 billion) and the Mid-Atlantic Region (\$1.6 billion) to provide an outlet for the generation.

The transmission constraints driving the transmission overlay for the 30% HOBO scenario are shown in Table 1-18 and the transmission overlay to resolve the constraints is shown in Table 1-19.

E e se tra e	
	ess – Septa 500 kV
	– Surry 500 kV
	– Carson 500 kV
	n – Suffolk 500 kV
Surry	- Chickahominy 500 kV
Chicka	ahominy – Elmont 500 kV
Elmon	it – Ladysmith 500 kV
Ladysi	mith – North Anna 500 kV
North	Anna – Morrisville 500 kV
Keene	y – Red Lion 500 kV
Keene	y – Rock Springs 500 kV
Rock S	Springs – Peach Bottom 500 kV
Red Li	on – Hope Creek 500 kV
Cedar	Creek – Red Lion 500 kV
Red Li	on 500/230 kV
Peach	Bottom 500/230 kV
	ac – Loretto 345 kV
Lorette	o – Wilton Center 345 kV
Many	230 kV circuits in Dominion
Keene	y – Red Lion 230 kV
Harmo	ony – Keeney 230 kV
Linwo	od – Chichester 230 kV
Sewar	d 230/115 kV
Lee Co	ounty – Byron 345 kV
Fentre	ess 500/230 kV
	n – Cook 345 kV
Sewar	d – Johnstown 230 kV

Table 1-18: Transmission Constraints for 30% HOBO Scenario

-
Transmission Overlay Due to Reliability
Two Axton – Fentress 765 kV
Two Joshua Falls – Fentress 765 kV
Four Fentress 765/500 kV
Two Fentress – Suffolk 500 kV
Rebuild Surry – Chickahominy 500 kV
2 nd Fentress – Thrasher 230 kV
2 nd Fentress – Landstown 230 kV
Two Cedar Creek – Conastone 500 kV
Joshua Falls – Belmont 765 kV
2 nd Red Lion – Keeney 500 kV
2 nd Pontiac – Loretto 345 kV
2 nd Loretto – Wilton Center 345 kV
2 nd Peachbottom 500/230 kV
Transmission Overlay Due to Congestion
3 ^{ra} Linwood – Chichester 230 kV
3 rd Seward 230/115 kV
2 nd Lee County – Byron 345 kV
LaSalle – Wilton Center 765 kV
2 nd Yadkin – Suffolk 500 kV
Replace Fentress 500/230 kV
2 nd Benton – Cook 345 kV
Reconductor Keeney – Harmony 230 kV
Reconductor Seward – Johnstown 230 kV

Table 1-19: Transmission Overlay for 30% HOBO Scenario

1.7.4 Transmission Overlay Results for 30% HSBO Scenario

The 30% HSBO scenario resulted in \$8 billion of transmission upgrades, the majority (\$7 billion) of which was needed to accommodate 41 GW of renewable projects in Illinois and Indiana. The transmission constraints driving the transmission overlay for the 30% HSBO scenario are shown in Table 1-20 and the transmission overlay to resolve the constraints is shown in Table 1-21.

Plano – Collins 765 kV
Collins – Wilton Center 765 kV
Wilton Center – Dumont 765 kV
Marysville – Kammer 765 kV
Mountaineer – Belmont 765 kV
Dresden – Elwood 345 kV
Pontiac – Dresden 345 kV
Pontiac – Wilton Center 345 kV
E. Frankfort – Crete 345 kV
Stillwell – Dumont 345 kV
Munster – Burnham 345 kV
Many 345 kV circuit in AEP
Many 345 kV circuits in ComEd
Quad – Sub 91 345 kV
Kanawha River – Matt Funk 345 kV
Fentress – Thrasher 230 kV
Quad Cities – Rock Creek 345 kV
Possum 500/230 kV
Electric Jct Lombard 345 kV

Table 1-20: Transmission Constraints for 30% HSBO Scenario

Table 1-21: Transmission Overlay for 30% HSBO Scenario

Transmission Overlay Due to Reliability
Quad Cities – La Salle 765 kV
La Salle – Pontiac 765 kV
Pontiac – Greentown 765 kV
Two Greentown – Vassell 765 kV
New Vassell – Star 765 kV
New Pontiac – Sullivan 765 kV
New Star – S. Canton 765 kV
Transmission Overlay Due to Congestion
2 nd Quad – Sub 91 345 kV
Reconductor Kanawha R. – M. Funk 345 kV
2 nd Fentress – Thrasher 230 kV
2 nd Quad Cities – Rock Creek 345 kV
2nd Possum 500/230 kV
2nd Electric Jct Lombard 345 kV

1.8 Transmission Overlay Appendices

1.8.1 Appendix A: Geographic Maps for 20% Scenarios

Figure 1-8 below is a legend for the 20% scenario geographical maps shown in Appendix A.

Figure 1-8: Legend for Geographical Maps

Transmission Constraints and Overlays for 20% LOBO Scenario

The transmission constraints and transmission overlays for the 20% LOBO scenario are listed in Table 1-22 and Table 1-23. Figure 1-9 through Figure 1-12 show the constraints and overlays geographically.

Dresden – Elwood 345 kV
Brokaw - Pontiac 345 kV
Quad - Sub 91 345 kV
Plano 765/345 kV
Quad - Rock Cities 345 kV
Kanawha River – Matt Funk 345 kV
E. Frankfort – Crete 345 kV

Table 1-22: Transmission Constraints for 20% LOBO

Table 1-23: Transmission Overlay for 20% LOBO

Transmission Overlay Due to Reliability
2nd Dresden – Elwood 345 kV 2nd Brokaw - Pontiac 345 kV
Transmission Overlay Due to Congestion
2nd Quad - Sub 91 345 kV
2nd Quad - Rock Cities 345 kV
Reconductor Kanawha R. – M. Funk 345 kV
2nd E. Frankfort – Crete 345 kV
New Plano 765/345 kV

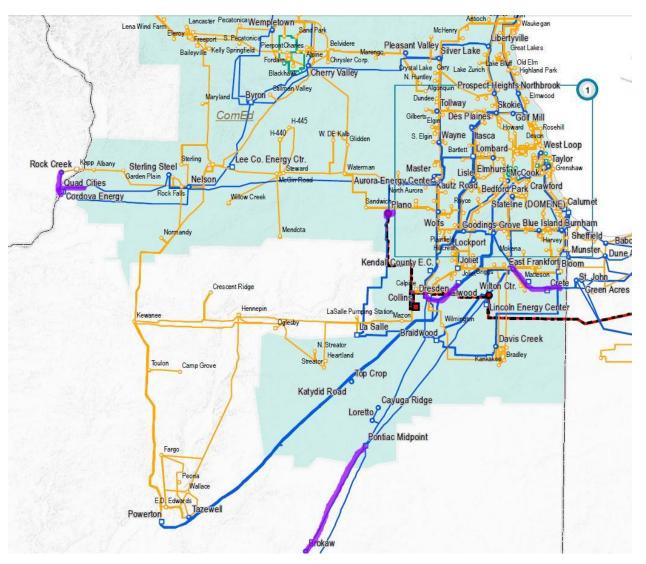


Figure 1-9: 20% LOBO Transmission Constraints – ComEd

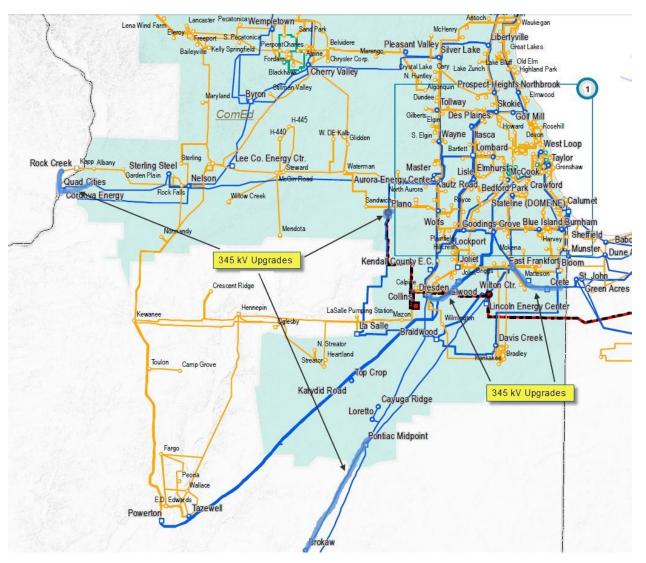


Figure 1-10: 20% LOBO Transmission Overlay – ComEd

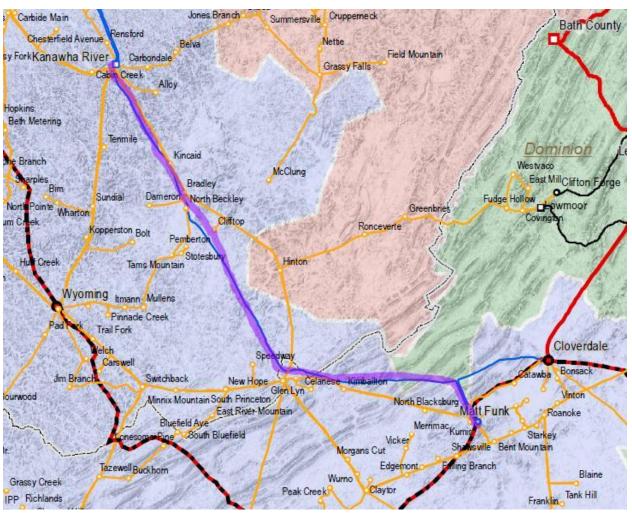


Figure 1-11: 20% LOBO Transmission Constraints – AEP

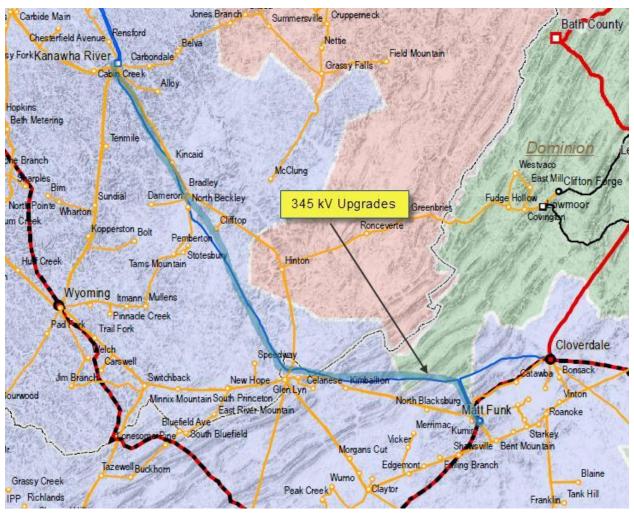


Figure 1-12: 20% LOBO Transmission Overlay – AEP

Transmission Constraints and Overlays for 20% LODO Scenario

The transmission constraints and transmission overlays for the 20% LODO scenario are listed in Table 1-24 and Table 1-25. Figure 1-13 through Figure 1-16 show the constraints and overlays geographically.

Byron - Cherry Valley 345 kV	
Valley 500/230 kV	
Altoona – Raystown 230 kV	
Raystown – Lewistown 230 kV	

Table 1-24: Transmission Constraints for 20% LODO Scenario
--

Transn	nission Overlay Due to Congestion
2nd By	ron - Cherry Valley 345 kV
Replac	e Valley 500/230 kV
Recond	Juctor Altoona – Raystown 230 kV
Recond	ductor Raystown – Lewistown 230 kV

Table 1-25: Transmission Overlay for 20% LODO Scenario

Figure 1-13: 20% LODO Transmission Constraints - ComEd

Figure 1-14: 20% LODO Transmission Overlay – ComEd

Figure 1-15: 20% LODO Transmission Constraints – Penelec

Figure 1-16: 20% LODO Transmission Overlay – Penelec

Transmission Constraints and Overlays for 20% HOBO Scenario

The transmission constraints and transmission overlays for the 20% HOBO scenario are listed in Table 1-26 and Table 1-27. Figure 1-17 through Figure 1-22 show the constraints and overlays geographically.

Fentress – Thrasher 230 kV
Fentress – Landstown 230 kV
Fentress 500/230 kV
Thrasher - Huntsman 230 kV
Huntsman - Yadkin 230 kV
Shawboro - Eliz CT 230 kV
TMI 500/230 kV
Everetts - Greenville 230 kV
Quad - Sub 91 345 kV
Kanawha River – Matt Funk 345 kV
Plano 765/345 kV

Table 1-26: Transmission Constraints for 20% HOBO Scenario

Table 1-27: Transmission Overlay for 20% HOBO Scenario

Transmission Overlay Due to Reliability
2 nd Fentress – Thrasher 230 kV
2 nd Fentress – Landstown 230 kV
Replace Fentress 500/230 kV
New Fentress - Carson 500 kV
2nd TMI 500/230 kV
Transmission Overlay Due to Congestion
2 ^{na} Everetts – Greenville 230 kV
2nd Quad - Sub 91 345 kV
Reconductor Kanawha R. – M. Funk 345 kV
New Plano 765/345 kV

Figure 1-17: 20% HOBO Transmission Constraints – Dominion

Figure 1-18: 20% HOBO Transmission Overlay – Dominion

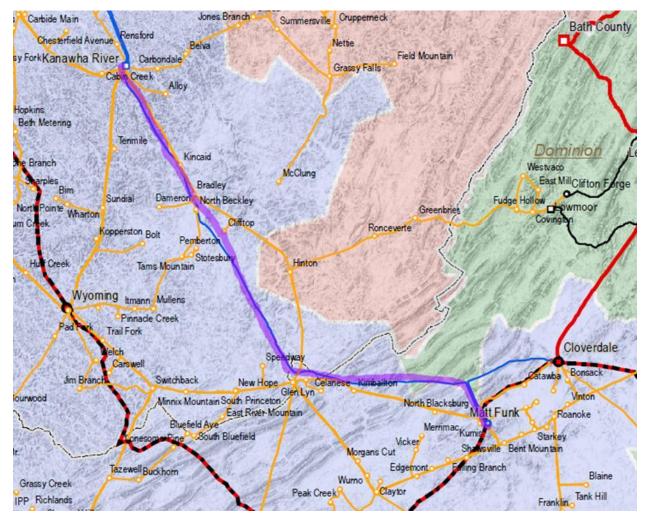


Figure 1-19: 20% HOBO Transmission Constraints – AEP

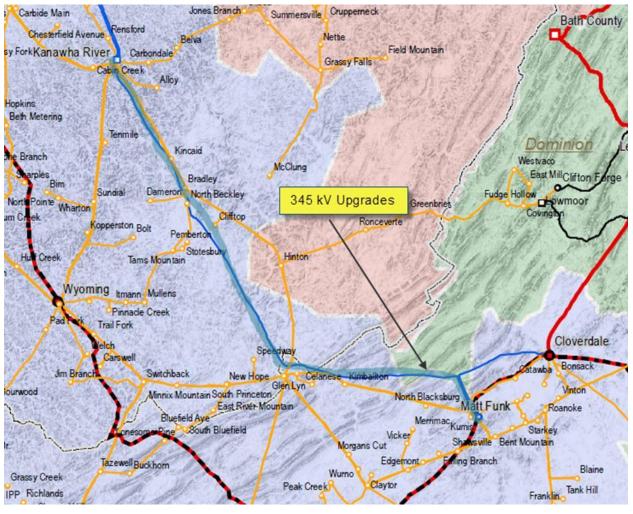


Figure 1-20: 20% HOBO Transmission Overlay – AEP

Figure 1-21: 20% HOBO Transmission Constraints – ComEd

Figure 1-22: 20% HOBO Transmission Overlay – ComEd

Transmission Constraints and Overlays for 20% HSBO Scenario

The transmission constraints and transmission overlays for the 20% High Solar Best Onshore scenario are listed in Table 1-28 and Table 1-29. Figure 1-23 through Figure 1-26 show the constraints and overlays geographically.

Table 1-28: Transmission Constraints for 20% HSBO Scenario

Plano 765/345 kV
Kanawha River – Matt Funk 345 kV
E. Frankfort – Crete 345 kV

Table 1-29: Transmission Overlay for 20% HSBO Scenario

Transmission Overlay Due to Congestion
New Plano 765/345 kV
Reconductor Kanawha R. – M. Funk 345 kV
2nd E. Frankfort – Crete 345 kV

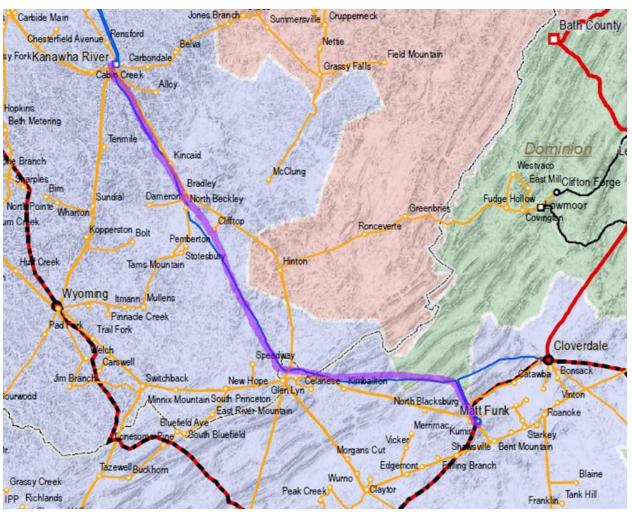


Figure 1-23: 20% HSBO Transmission Constraints – AEP

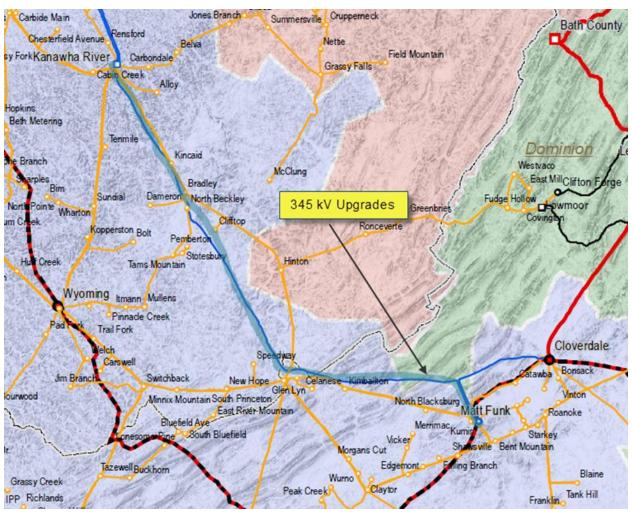


Figure 1-24: 20% HSBO Transmission Overlay – AEP

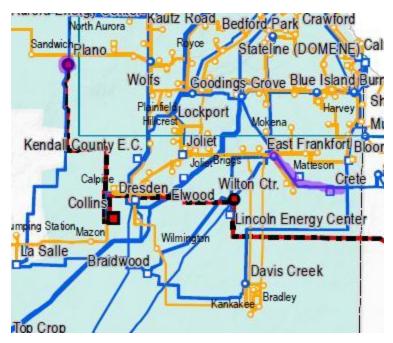


Figure 1-25: 20% HSBO Transmission Constraints - ComEd

Figure 1-26: 20% HSBO Transmission Overlay – ComEd

1.8.2 Appendix B: Geographic Maps for 30% Scenarios

Figure 1-27 below is a legend for the 30% scenario geographical maps shown in Appendix B1.

Figure 1-27: Legend for Geographical Maps

Transmission Constraints and Overlays for 30% LOBO Scenario

The transmission constraints and transmission overlays for the 30% LOBO scenario are listed in Table 1-30 and Table 1-31. Figure 1-28 through Figure 1-35 show the constraints and overlays geographically.

Plano – Collins 765 kV	Conastone - Emory Grove 230 kV
Collins – Wilton Center 765 kV	Glade - Warren 230 kV
Wilton Center – Dumont 765 kV	Seward - Johnstown 230 kV
Marysville – Kammer 765 kV	Seward 230/115 kV
Mountaineer – Belmont 765 kV	Homer City 345/230 kV
Dresden – Elwood 345 kV	Watercure - Homer City 345 kV
Pontiac – Dresden 345 kV	Pontiac 765/345 kV
Pontiac – Wilton Center 345 kV	La Salle 765/345 kV
Lee County – Nelson 345 kV	Breed - Casey 345 kV
Dresden – Electric Jct. 345 kV	Jefferson 765/345 kV
E. Frankfort – Crete 345 kV	Pleasant View - Ashburn 230 kV
Crete – St. John 345 kV	Kammer 765/500 kV
Reynolds – Olive 345 kV	Fentress 500/230 kV
Stillwell – Dumont 345 kV	Bayshore - Monroe 345 kV
Munster – Burnham 345 kV	Convoy - R60 345 kV
Many 345 kV circuit in AEP	Bremo - Powhatan 230 kV
Many 345 kV circuits in ComEd	Everetts - Greenville 230 kV
Quad – Sub 91 345 kV	Pleasant View 500/230 kV
Fentress – Thrasher 230 kV	Chesterfield - Tyler 230 kV
Fentress – Landstown 230 kV	Person - Halifax 230 kV
Valley 500/230 kV	Powhatan - Judes 230 kV
Kanawha River – Matt Funk 345 kV	Zion - Pleasant Prairie 345 kV
New Freedom - Monroe 230 kV	

Transmission Overlay Due to Reliability	Transmission Overlay Due to Congestion
Quad Cities – La Salle 765 kV	3rd Seward 230/115 kV
Two La Salle – Pontiac 765 kV	Replace Homer City 345/230 kV
Two Pontiac – Greentown 765 kV	2nd Watercure - Homer City 345 kV
Two Greentown – Vassell 765 kV	New Pontiac 765/345 kV
Two New Vassell – Star 765 kV	New La Salle 765/345 kV
Star – Keystone 765 kV	2nd Breed - Casey 345 kV
Star – S. Canton 765 kV	New Jefferson 765/345 kV
Pontiac – Sullivan 765 kV	Reconductor Pl. View - Ashburn 230 kV
Sullivan – Jefferson 765 kV	New Kammer 765/550 kV
Jefferson – Belmont 765 kV	Replace Fentress 500/230 kV
2 nd Lee County – Nelson 345 kV	2nd Eugene - Bunsonville 345 kV
2 nd Reynolds – Olive 345 kV	2nd T94A - Palisades 345 kV
2 nd Quad Cities – Rock Creek 345 kV	2nd Bayshore - Monroe 345 kV
2 nd Marysville – Hyatt 345 kV	2nd Olive - Dumont 345 kV
	2nd Brokaw - Pontiac 345 kV
	Reconductor Convoy - R60 345 kV
	2 nd Everetts – Greenville 230 kV
	2nd Pleasant View 500/230 kV
	Reconductor Chesterfield - Tyler 230 kV
	Reconductor Person - Halifax 230 kV
	Reconductor Powhatan - Judes 230 kV
	2nd Zion - Pleasant Prairie 345 kV
	2 nd Quad – Sub 91 345 kV
	2 nd Fentress – Thrasher 230 kV
	2 nd Fentress – Landstown 230 kV
	Replace Valley 500/230 kV
	Reconductor Kanawha R. – M. Funk 345 kV
	2nd New Freedom - Monroe 230 kV
	3rd Conastone - Emory Grove 230 kV
	Reconductor Glade - Warren 230 kV
	Reconductor Seward - Johnstown 230 kV

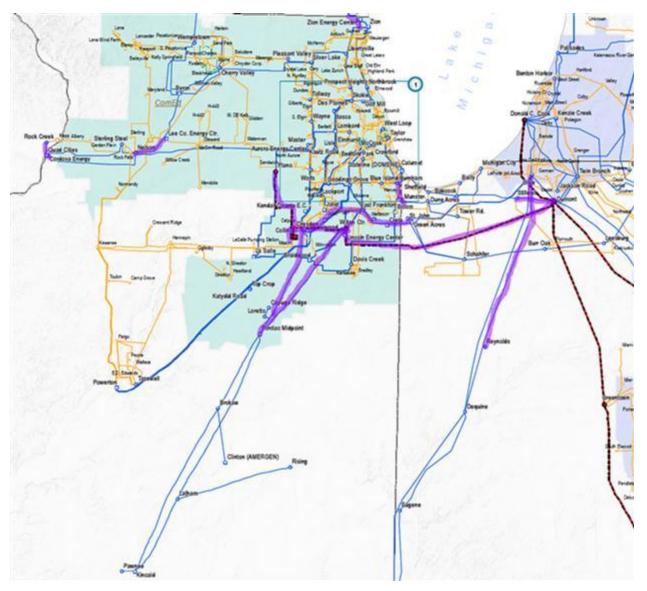


Figure 1-28: 30% LOBO Transmission Constraints – ComEd

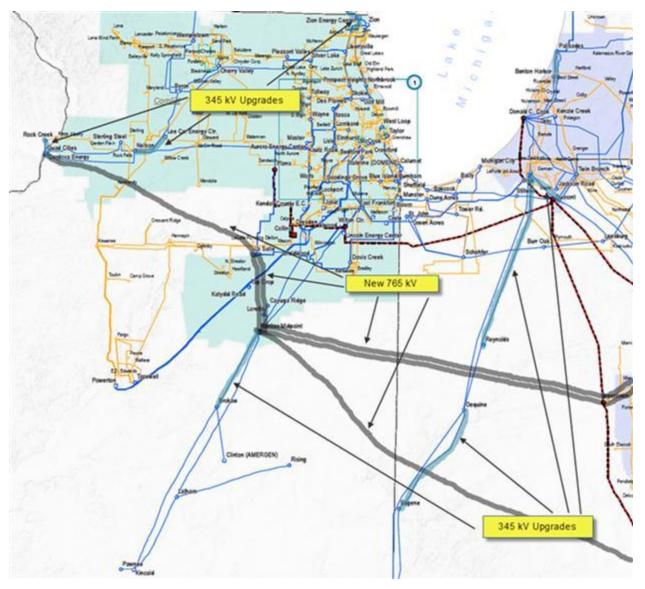


Figure 1-29: 30% LOBO Transmission Overlay – ComEd

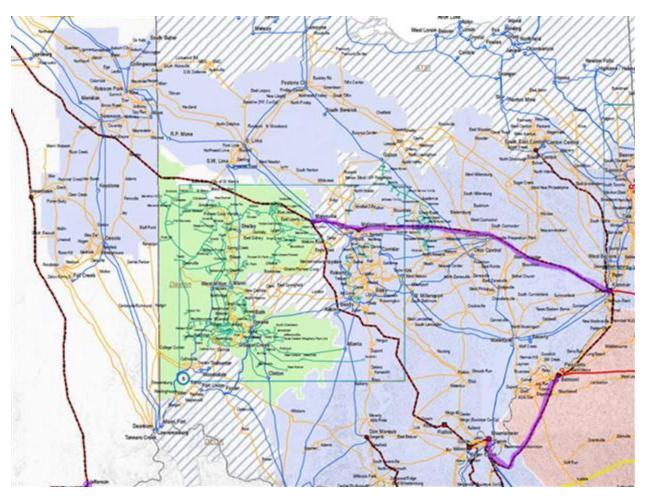


Figure 1-30: 30% LOBO Transmission Constraints – AEP

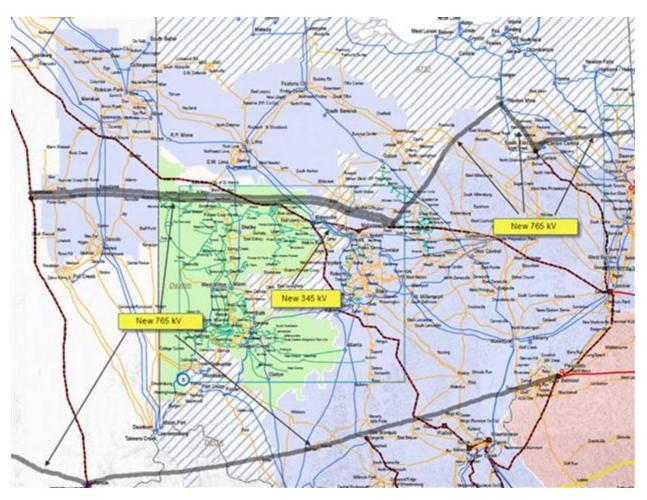


Figure 1-31: 30% LOBO Transmission Overlay – AEP

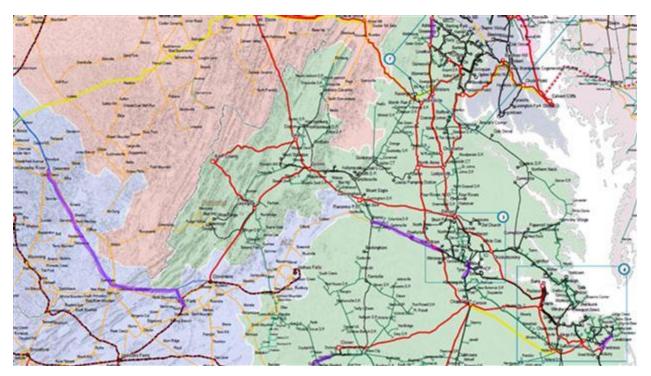


Figure 1-32: 30% LOBO Transmission Constraints – Dominion

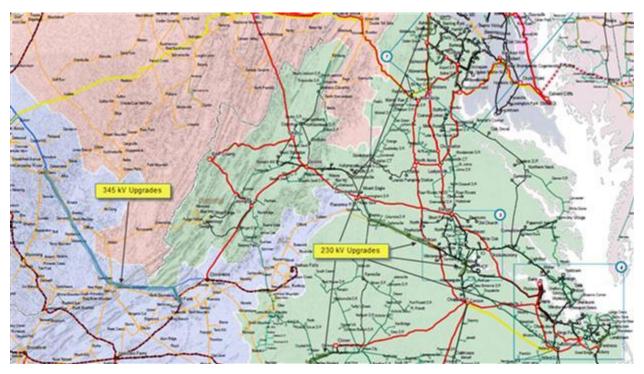


Figure 1-33: 30% LOBO Transmission Overlay – Dominion

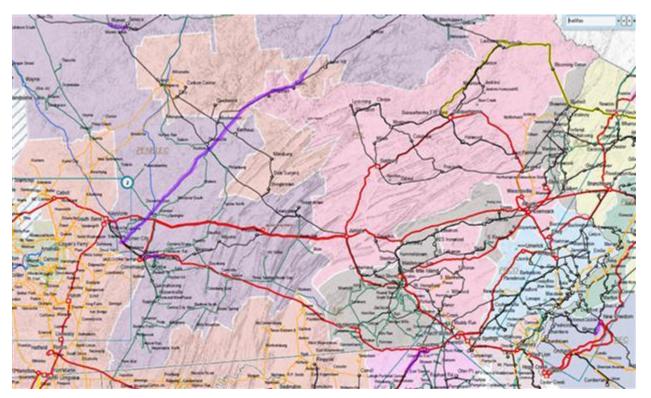


Figure 1-34: 30% LOBO Transmission Constraints – Mid-Atlantic Region

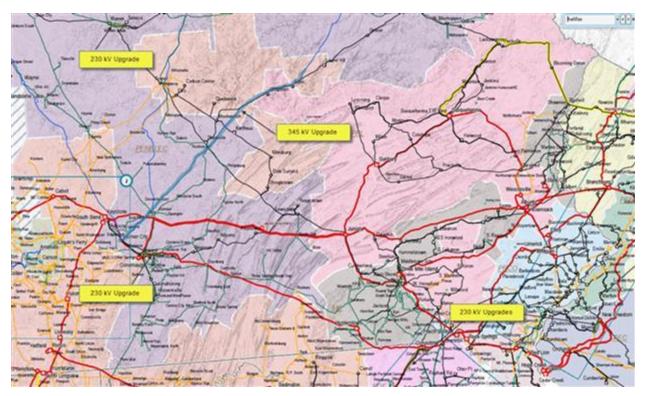


Figure 1-35: 30% LOBO Transmission Overlay – Mid-Atlantic Region

Transmission Constraints and Overlays for 30% LODO Scenario

The transmission constraints and transmission overlays for the 30% LODO scenario are listed in Table 1-32 and Table 1-33. Figure 1-36 through Figure 1-43 show the constraints and overlays geographically.

Dresden – Elwood 345 kV	
Pontiac – Wilton Center 345 kV	
La Salle – Plano 345 kV	
E. Frankfort – Braidwood 345 kV	
Plano – Electric Jct. 345 kV	
Marysville – Hyatt 345 kV	
Pearson – Halifax 230 kV	
Clover – Halifax 230 kV	
Altoona – Raystown 230 kV	
Raystown – Lewistown 230 kV	
Quad – Sub 91 345 kV	
Everetts – Greenville 230 kV	
Fentress – Thrasher 230 kV	
Fentress – Landstown 230 kV	
Valley 500/230 kV	
Kanawha River – Matt Funk 345 kV	
Davis Besse – Beaver 345 kV	

Table 1-32: Transmission Constraints for 30% LODO Scenario

Table 1-33: Transmission Overlay for 30% LODO Scenario

Transmission Overlay Due to Reliability
LaSalle – Pontiac 765 kV
Two Pontiac 765/345 kV
2 nd Marysville – Hyatt 345 kV
2 nd Pearson – Halifax 230 kV
Pontiac – Greentown 765 kV
2 nd Clover – Halifax 230 kV
Transmission Overlay Due to Congestion
Reconductor Altoona – Raystown 230 kV
Reconductor Raystown – Lewistown 230 kV
2 nd Quad – Sub 91 345 kV
2 nd Everetts – Greenville 230 kV
2 nd Fentress – Thrasher 230 kV
2 nd Fentress – Landstown 230 kV
Replace Valley 500/230 kV
Reconductor Kanawha R. – M. Funk 345 kV
Reconductor Davis Besse – Beaver 345 kV

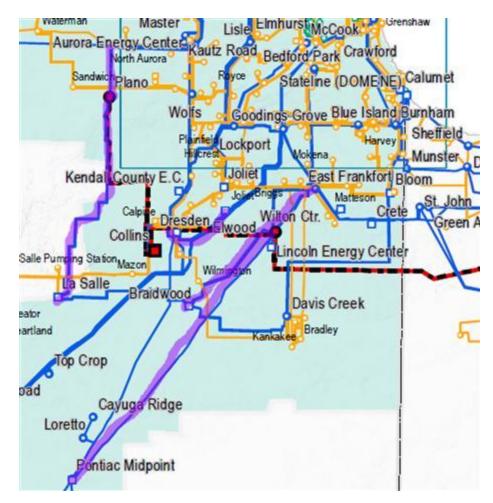


Figure 1-36: 30% LODO Transmission Constraints - ComEd

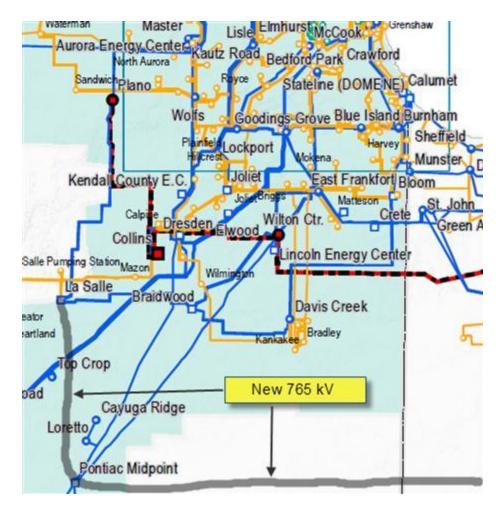


Figure 1-37: 30% LODO Transmission Overlay – ComEd

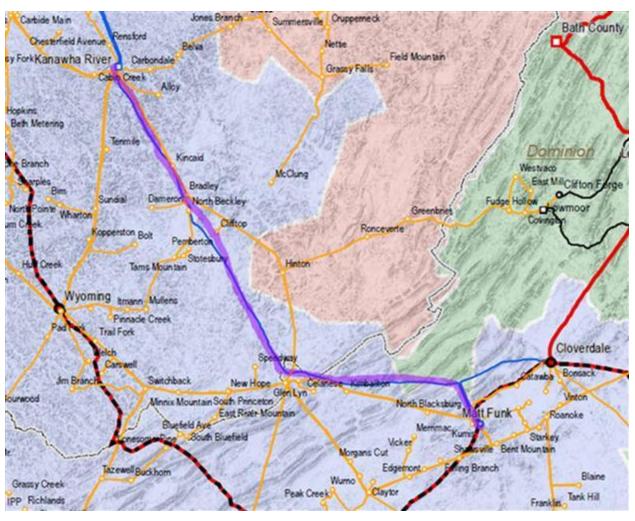


Figure 1-38: 30% LODO Transmission Constraints – AEP

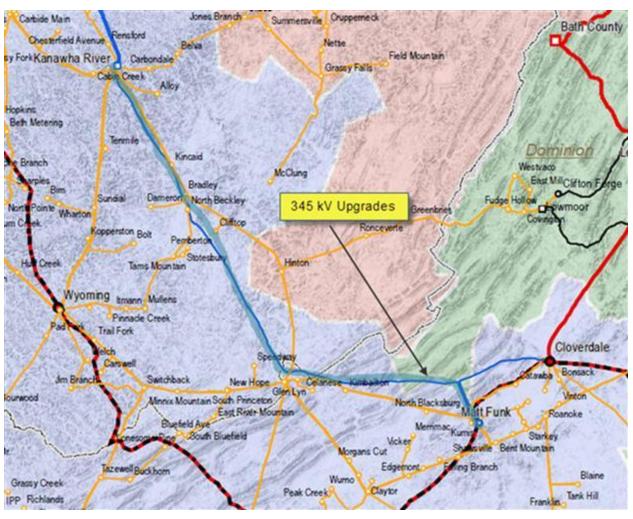


Figure 1-39: 30% LODO Transmission Overlay – AEP

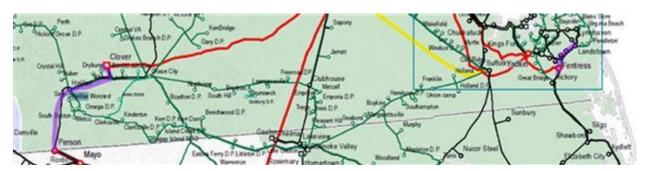


Figure 1-40: 30% LODO Transmission Constraints – Dominion

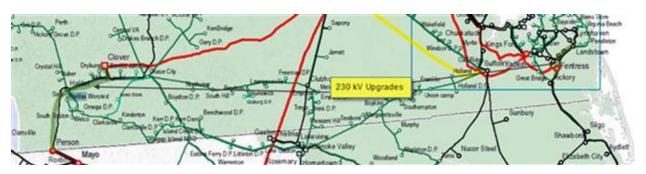


Figure 1-41: 30% LODO Transmission Constraints – Dominion

Figure 1-42: 30% LODO Transmission Constraints - Penelec

Figure 1-43: 30% LODO Transmission Overlay – Penelec

Transmission Constraints and Overlays for 30% HOBO Scenario

The transmission constraints and transmission overlays for the 30% High Offshore Best Onshore scenario are listed in Table 1-34 and Table 1-35. Figure 1-44 through Figure 1-49 show the constraints and overlays geographically.

Fentress – Septa 500 kV
Septa – Surry 500 kV
Septa – Carson 500 kV
Yadkin – Suffolk 500 kV
Surry - Chickahominy 500 kV
Chickahominy – Elmont 500 kV
Elmont – Ladysmith 500 kV
Ladysmith – North Anna 500 kV
North Anna – Morrisville 500 kV
Keeney – Red Lion 500 kV
Keeney – Rock Springs 500 kV
Rock Springs – Peach Bottom 500 kV
Red Lion – Hope Creek 500 kV
Cedar Creek – Red Lion 500 kV
Red Lion 500/230 kV
Peach Bottom 500/230 kV
Pontiac – Loretto 345 kV
Loretto – Wilton Center 345 kV
Many 230 kV circuits in Dominion
Keeney – Red Lion 230 kV
Harmony – Keeney 230 kV
Linwood – Chichester 230 kV
Seward 230/115 kV
Lee County – Byron 345 kV
Fentress 500/230 kV
Benton – Cook 345 kV
Seward – Johnstown 230 kV

Table 1-34: Transmission Constraints for 30% HOBO Scenario

Transmission Overlay Due to Reliability
Two Axton – Fentress 765 kV
Two Joshua Falls – Fentress 765 kV
Four Fentress 765/500 kV
Two Fentress – Suffolk 500 kV
Rebuild Surry – Chickahominy 500 kV
2 nd Fentress – Thrasher 230 kV
2 nd Fentress – Landstown 230 kV
Two Cedar Creek – Conastone 500 kV
Joshua Falls – Belmont 765 kV
2 nd Red Lion – Keeney 500 kV
2 nd Pontiac – Loretto 345 kV
2 nd Loretto – Wilton Center 345 kV
2 nd Peachbottom 500/230 kV
Transmission Overlay Due to Congestion
3 ^{ra} Linwood – Chichester 230 kV
3 rd Seward 230/115 kV
2 nd Lee County – Byron 345 kV
LaSalle – Wilton Center 765 kV
2 ^{na} Yadkin – Suffolk 500 kV
Replace Fentress 500/230 kV
2 nd Benton – Cook 345 kV
Reconductor Keeney – Harmony 230 kV
Reconductor Seward – Johnstown 230 kV

Table 1-35: Transmission Overlay for 30% HOBO Scenario

Figure 1-44: 30% HOBO Transmission Constraints - ComEd

Figure 1-45: 30% HOBO Transmission Overlay – ComEd

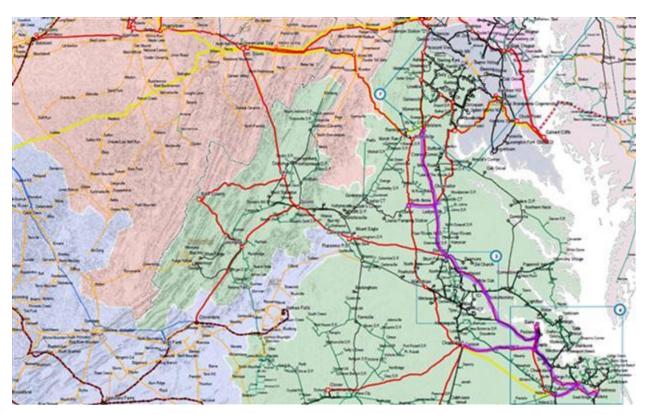


Figure 1-46: 30% HOBO Transmission Constraints – Dominion

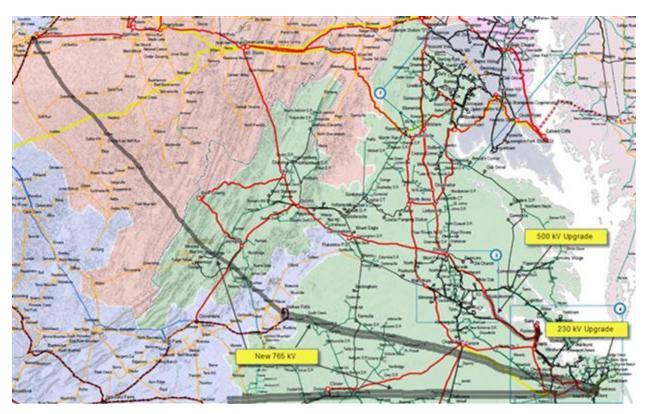


Figure 1-47: 30% HOBO Transmission Overlay – Dominion

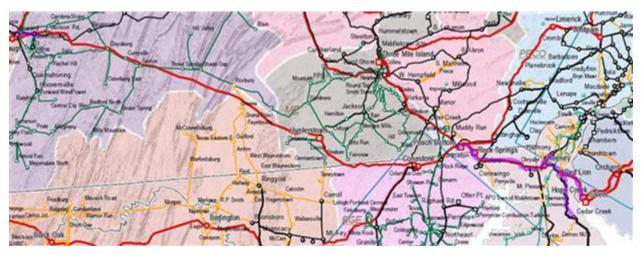


Figure 1-48: 30% HOBO Transmission Constraints – Mid-Atlantic Region

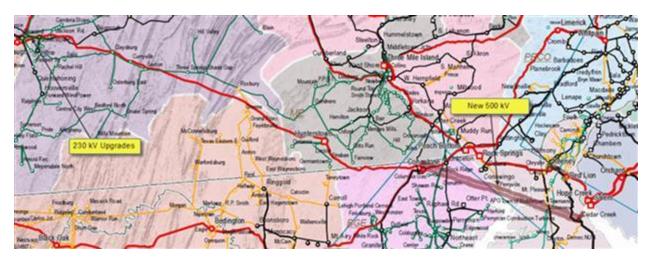


Figure 1-49: 30% HOBO Transmission Overlay – Mid-Atlantic Region

Transmission Constraints and Overlays for 30% HSBO Scenario

The transmission constraints and transmission overlays for the 30% High Solar Best Onshore scenario are listed in Table 1-36and Table 1-37. Figure 1-50 through Figure 1-53 show the constraints and overlays geographically.

Plano – Collins 765 kV
Collins – Wilton Center 765 kV
Wilton Center – Dumont 765 kV
Marysville – Kammer 765 kV
Mountaineer – Belmont 765 kV
Dresden – Elwood 345 kV
Pontiac – Dresden 345 kV
Pontiac – Wilton Center 345 kV
E. Frankfort – Crete 345 kV
Stillwell – Dumont 345 kV
Munster – Burnham 345 kV
Many 345 kV circuit in AEP
Many 345 kV circuits in ComEd
Quad – Sub 91 345 kV
Kanawha River – Matt Funk 345 kV
Fentress – Thrasher 230 kV
Quad Cities – Rock Creek 345 kV
Possum 500/230 kV
Electric Jct Lombard 345 kV

Transmission Overlay Due to Reliability
Quad Cities – La Salle 765 kV
La Salle – Pontiac 765 kV
Pontiac – Greentown 765 kV
Two Greentown – Vassell 765 kV
New Vassell – Star 765 kV
New Pontiac – Sullivan 765 kV
New Star – S. Canton 765 kV
Transmission Overlay Due to Congestion
2 nd Quad – Sub 91 345 kV
Reconductor Kanawha R. – M. Funk 345 kV
2 nd Fentress – Thrasher 230 kV
2 nd Quad Cities – Rock Creek 345 kV
2nd Possum 500/230 kV
2nd Electric Jct Lombard 345 kV

Table 1-37: Transmission Overlay for 30% HSBO Scenario

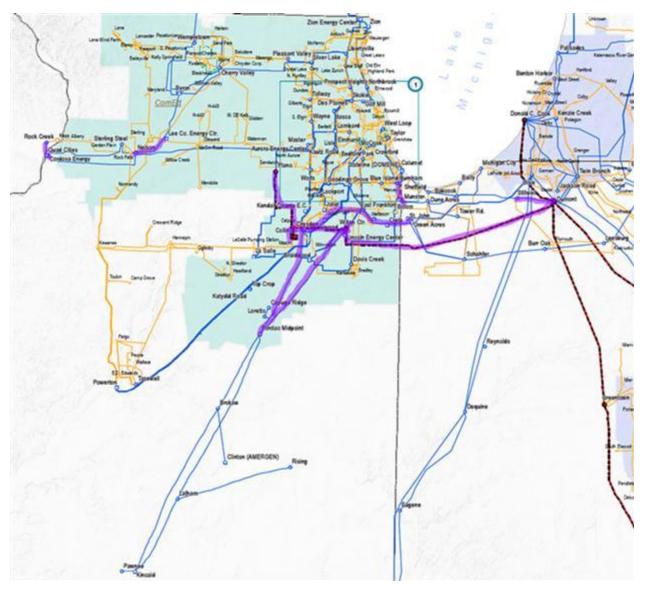


Figure 1-50: 30% HSBO Constraints – ComEd

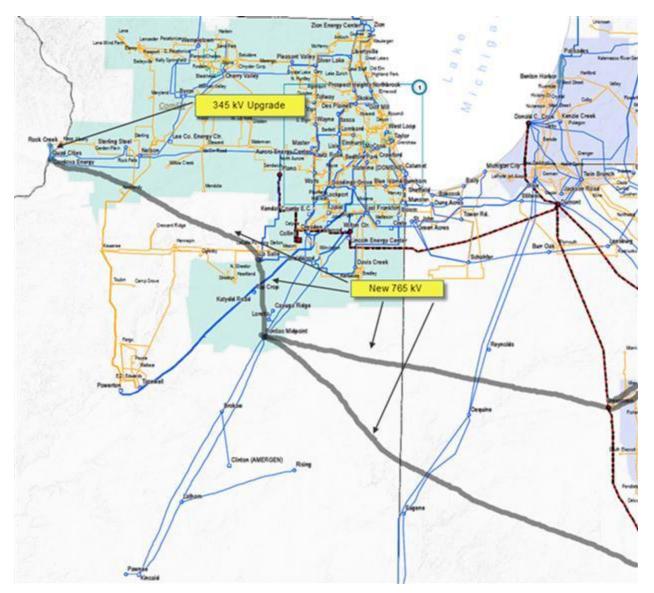


Figure 1-51: 30% HSBO Transmission Overlay – ComEd

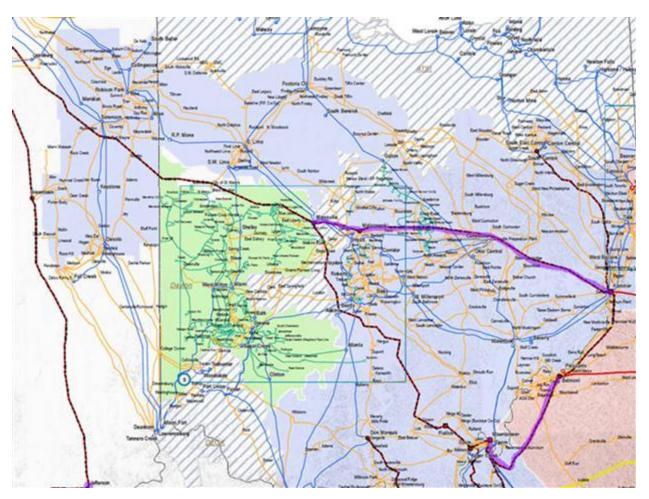


Figure 1-52: 30% HSBO Transmission Constraints – AEP

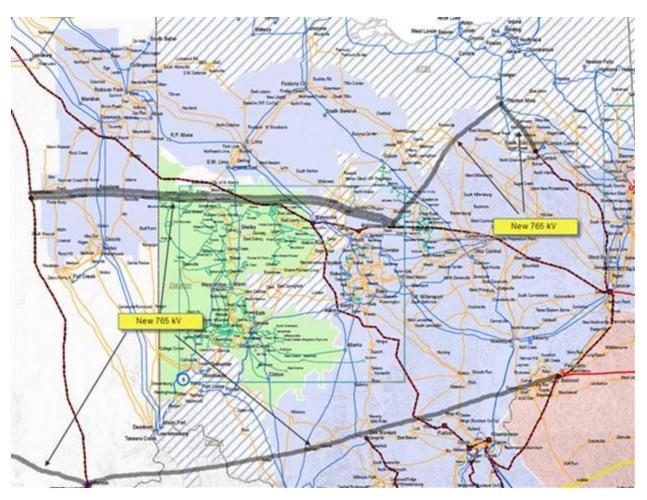


Figure 1-53: 30% HSBO Transmission Overlay – AEP

