

Power System Fundamentals

System Loads

PJM State & Member Training Dept.

PJM©2015 01/02/2015

Objectives

- Identify the different types of general load on the power system
- Describe the characteristics of non-motor load on the power system
- Describe the characteristics of the motor loads on the power system

 Describe the effects of changing voltage has on the different load types

PJM©2015 01/02/2015

Types of System Loads

- General Types of System Loads
 - Non-Motor
 - Lighting
 - Incandescent, fluorescent, etc.
 - Heating
 - Water heating, resistance heating. etc.
 - Motors
 - Induction
 - Most popular type
 - Air Conditioners, freezers, washers, fans, pumps, etc.
 - Synchronous

Non-motor Load

- Load magnitude varies with voltage magnitude
- Two general classifications
 - Constant Current Load
 - Varies directly with the voltage
 - Constant Resistance/Impedance Load
 - Varies with the square of the voltage

Motor Load

- Motor Load makes up a large portion of total load (typically 40% to 60%)
 - Classified as Constant Power Load
 - Often motors are of the induction type
 - Favored due to simplicity and ruggedness
 - Requires large amount of reactive power to start

Motors

- Stator windings are distributed around the stator
- Three-phase AC voltages are applied to the stator windings
- An electric current is induced in the rotor bars
- Magnetic field of the stator drags the rotor around
- Rotor falls behind or "slips" as the field rotates

PJM©2015

Motors

- The rotor slots on a squirrel cage rotor are not exactly parallel to the shaft. They are skewed for two main reasons:
 - To make the motor run quietly by reducing magnetic hum
 - To help reduce the locking tendency of the rotor
- Almost 90% of three-phase AC induction motors are of the squirrel cage rotor type

Characteristics of Motors

- Induction motors at rest appear just like a short circuited transformer
- Draws a very high current called "Locked Rotor Current" (LRC) when started
- The LRC of a motor can be as high as 500% of full load current (FLC)

Characteristics of Motors

- The current drawn by a motor has two components:
 - Reactive (magnetizing current) dependent on stator voltage. Can vary from as low as 20% of FLC to as high as 60% of FLC
 - Active (working current) directly proportional to the load

Characteristics of Motors

- Motor load does not significantly vary with voltage magnitude
 - Tries to maintain the same power output as voltage drops
- If voltage drops to 80% or less of rated there is a chance motors will slow down or "stall"
- Combined reactive power draw of numerous stalled motors could prevent system voltage from recovering

PJM@2015

01/02/2015

Effect of frequency on load

- Non-Motor Load
 - More dependent on voltage than frequency
 - For all intensive purposes we could say that non-motor load does not vary with frequency
- Motor Load
 - More dependent on frequency than voltage
 - Rule of thumb is for a 1% drop in frequency, motor load will decrease by 3%

Effect of frequency on load

PJM©2015

Effect of Voltage on Loads

PJM©2015

Effect of Voltage on Loads

- Total System Load reduction due to a decrease in voltage
 - A rule of thumb is that for a 5% percent reduction in voltage you will see approximately a 3% reduction in system load

Effect of Time on Load Magnitude

PJM©2015

Load Diversity

- Prolonged periods of low voltage will lead to loss of load diversity
 - During low voltage the output of a heater will reduce
 - This causes more heating units to be on or stay on longer to maintain the same temperature
 - More heaters operating and for longer periods will eventually cause an increase in total system load

Summary - Load

- Two types of system load are Motor and Non-motor
- Non-motor load has two classifications: Constant current and constant resistance/impedance
- Non-motor load tends to vary with voltage
- Motor load tends to remain constant (Constant Power)
- At start up or when recovering from a stall, motors can draw 5 to 8 times their normal MVARs

Summary - Load

- Motor load attempting to return from a stalled condition can prevent system voltages from recovering
- Extended periods of low voltage can lead to loss of load diversity
- Loss of load diversity results in an increase of system load
- For a mix of motor and non-motor load, the total customer load on the system will decrease by 3% for a 5% drop in voltage

Questions?

PJM©2015 01/02/2015

What are the 3 classifications of load on the system?

Rank	Responses	
1		
2		
3		
4		
5		
6	Other	

What are the two components of current drawn by a motor?

Rank	Responses
1	
2	
3	
4	
5	
6	Other

Response Counter

Both motor and non-motor loads vary with voltage.

A. True

Response Counter

As a rule of thumb, non-motor load will reduce by _____ for a 5% drop in voltage

1	17%	17%	17%	17%	17%	17%
2						
3						
4						
5						
6 Other						
Response Counter						

After a voltage reduction, load remains depressed until the voltage is returned to normal

A. True

Resources and References

- Clark, H. (2004). Voltage and Reactive Power for Planning and Operation.
 Harrison K. Clark
- Freescale. (2004-2013). Motor Control Tutorial. Retrieved from http://www.freescale.com/webapp/sps/site/training information.jsp?code=WBT M OTORCONTROL TUT#