

Long-Term Regional Transmission Planning (LTRTP) Update

PJM Staff Long-Term Regional Transmission Planning Workshop Nov 9, 2023

Review LTRTP workshop feedback Review LTRTP Framework Revisions Manual Update Stakeholder Feedback on workshop 4 content

www.pjm.com | Public

Next Steps

LTRTP Workshop Feedback

Modeling Public Policies

- Three LTRTP workshops held so far (7/21, 8/22 and 9/21)
 - Long Term planning discussions also occurred in 2022
- PJM received valuable feedback on how to approach public policies in LTRTP scenarios
 - Concerns raised on whether it is appropriate to model, plan and cost allocate all public policy requirements as reliability projects in the LTRTP framework
- PJM considered this feedback and revised the LTRTP scenarios to distinguish between (1) transmission needs related to core reliability and (2) additional transmission solutions that states may voluntarily sponsor

LTRTP Framework

Workshop Focus

(1) Scenario based Reliability Planning

(2) Resource mix assumption updates

(3) Projected loads (electrification / data center)

(4) Capacity expansion process to develop resource mix for scenarios

(5) Broad set of economic benefits

Long-Term Scenario Development

- •• Scenarios must be plausible
- Scenarios and sensitivities capture realistic ranges of selected inputs
- •• Scenario assumptions and methods are transparent

Scenarios

PJM's Construct – PPR modeling

- First, PJM categorized Public Policy Requirements (PPR) into 5 buckets
 - 1. Load PPRs: BTM, Electrification, etc.
 - 2. Federal retirement PPRs: EPA
 - 3. State retirement PPRs: IL CEJA, NJ CO₂ rule
 - 4. Federal new generation PPRs: IRA
 - 5. State new generation PPRs: RPS, OSW, etc.
- Next, PJM allocated these PPRs to the three LTRTP scenarios and relabeled them
 - Base Scenario will address reliability needs and consider PPRs 1-4, and some level of state new generation PPRs to meet the 1-in-10 reliability target
 - Medium and High Scenarios have additional PPRs and allow states to voluntarily sponsor additional transmission needs and solutions through SAA

• PJM can consider performing sensitivities, e.g. for lower data center load

- Base Scenario
 - Identifies Intermediate and Long-Term Reliability needs and informs Near-Term solutions
- Medium and High Scenarios
 - Identify needs that states may voluntarily sponsor via SAA
 - Inform PJM reliability actions (including low scenarios or sensitivities)
 - Identify robust solutions (e.g. to more EV growth or fewer data centers)
 - Postpone posting of needs
 - Accelerate needs and solutions if needs appear across multiple scenarios and sensitivities

Approach to New LTRTP Scenarios and Cost Allocation

Matrix – Policies by LTRTP Scenario Legend **PJM's annual load forecast** Medium High 🗴 Not Included 🛛 🗸 Included Base Policies ~~^0 ~~~ Load Policies*(e.g. Electrification, BTM) High Federal Policy Retirements (e.g. EPA) State Policy Retirements (e.g. CO₂, CEJA) Inflation Reduction Act **Replacements/Generation Policies** Use queue to meet 1-in-10 Statutory** Statutory (e.g. RPS, Offshore wind) Clean Energy Objectives *** Statutory** Statutory

Notes: Sensitivity for econ. at-risk units; * Includes Data Centers; ** Sensitivities for goals and future PPR; *** As possible; will work with states on modeling

Replacement Generation Illustration

Background

- Existing generation is mainly thermal
- 98% of pre-ISA MW is renewables or storage

Generation Replacement Approach

Medium Scenario Replacements

- Use queue data and state-identified locations
- Select projects with capacity expansion to meet load given retirements and policies

Base Scenario

- Keep only queue projects
- Add/remove/scale projects until 1-in-10 based on economics

Queue and State-Identified Locations

Capacity ExpansionLoadPoliciesFuel PricesRetirementsTechnology

Medium Scenario

- Keep Queue Projects
- Add/Remove/Scale
 Projects until 1-in-10

Base Scenario

LTRTP Analysis Pillar - Reliability Model Building & Analysis

••Reliability analysis is the primary focus

Analysis

- Extend two year cycle to three year cycle to account for additional scenarios, sensitivities and transmission needs
- Supplement 8 year power flows with 15 year power flows
 - 8 year power flow model will be used to perform both thermal and voltage analysis and will replace the 10 year model used for voltage analysis
 - 15 year model will be used to perform thermal analysis and limited voltage analysis
 - Medium/High/Base scenarios
 - Linear interpolation using year 5, 8 and 15 thermal analysis to determine required in-service dates

Recommended Enhancements To Long-Term Planning Process

* Seek transmission solutions for less complex needs in the near-term 18-month cycle window, and address remaining more complex needs in the long-term 36-month cycle window

Reliability Model Building

- The LTRTP process will begin every three years in January
- During the first year of the three year cycle a set of assumptions for years 6-15 will be developed and intermediate-term (year 8) and longterm (year 15) power flow models will be built
 - Develop year 8 and 15 cases in parallel with year 5 cases after capacity expansion developed
 - Seek transmission solutions for less complex needs in the near-term18-month cycle window, and seek remaining more complex needs in the long-term 36month cycle window
 - PJM will determine on a case by case basis which needs will be considered complex based largely on the concentration, magnitude and voltage level of reliability violations in a particular area of the system

- N-1, generator & load deliverability (years 8 & 15)
 - Monitor 230 kV+ in years 8 and 15; monitor lower kV in year 8 for use as necessary to inform years 5-8
 - Ignore terminal equipment limitations
 - Contingencies
 - Singles & Towers (Year 8 and 15)
 - Stuck breakers and bus faults (Year 8 only)
 - Voltage analysis focusing on 230 kV+ in Year 8 and 500 kV+ in Year 15 as needed
- N-1-1 (year 8 only)
 - Thermal & voltage analysis focusing on 230 kV+

Required In-Service Date For Years 6-15

- Replace DFAX extrapolation with linear interpolation of thermal results from year 5, 8 and 15 analyses to determine required inservice dates
 - Use year 5 and year 8 thermal loadings from generator deliverability, load deliverability and N-1-1 to determine year 5-8 required in-service dates
 - Use year 8 and year 15 thermal loadings from generator and load deliverability to determine year 8-15 required in-service date

Line A-B loading increase from Years 5 through Year 15 using linear interpolation of Year 5, 8 and 15 loadings

	Rating											
Line	(MVA)	Yr 5	Yr 6	Yr 7	Yr 8	Yr 9	Yr 10	Yr 11	Yr 12	Yr 13	Yr 14	Yr 15
A-B	3500	98.0%	98.3%	98.6%	98.9%	99.2%	99.5%	99.8%	100.1%	100.4%	100.7%	101.0%

LTRTP Needs Identification

- Once the reliability analysis has been completed on each scenario, PJM will categorize the potential long-lead time transmission needs into reliability and SAA needs, and either post into the near-term RTEP window or into the long-term LTRTP window, depending on the nature of the identified transmission needs
- For years 6-15, PJM will request window participants to address transmission needs that have transmission solutions with a lead time beyond 5 years

Solution Identification and Approval

•• Transmission solutions must address reliability and SAA needs •• Secondary benefits inform project selection and portfolio savings

Long-Term Planning Projects

- Long-lead (> 5 years from need identification, typically 230kV and Up)
- Address reliability needs or SAA needs
 - Projects addressing SAA needs are provided to sponsoring states for consideration
- Reliability projects can be accelerated if sufficiently large benefits

Project Selection Process

- 1. Projects must address reliability or SAA needs
- 2. Feasibility assessment cost and constructability analyses
- 3. Do-no-harm analysis
- 4. Secondary benefits to select among alternative projects
- 5. Other M-14 F Considerations
- 6. Support states in the identification of solutions for SAA needs

Project Selection Process – M-14F

Considerations that Inform Decisions Include: Cost Containment Commitment Cost Estimate Review Evaluation of Impacts on Other Projects Grid Resiliency/Performance (Includes CSPA) Net Load Payments Production Costs Project Execution Risk Project Schedule & Timing **Reliability Margin** Scope/Constructability/Diversity of Route Sensitivity Analysis Total System Congestion

 Benefit metrics identify long-lead transmission solutions that maintain reliability at the lowest possible system cost

• Alternative benefit metrics are *comprehensive* load payments + enhanced reliability benefits

 Δ Load Payments = Δ System Costs + Δ Profits

Benefit Metrics – Approach

Latest Approved Near-Term RTEP

Latest Approved Long-Term RTEP

Capacity Expansion, Reliability, Production Cost Models

System Cost + Enhanced Reliability

Latest Approved Near-Term RTEP

Latest Approved Long-Term RTEP

Current Cycle Long-Term RTEP

Capacity Exp<mark>ansio</mark>n, Reliability, Production Cost Models

System Cost + Enhanced Reliability

∆ Benefits

Benefits are calculated for Reliability and SAA Solutions

PJM Will consider calculating zonal benefits (But may be easier with load payments)

TEAC Discussions and Board Approval

- Once the window closes:
 - PJM staff reviews project proposals
 - PJM reports progress to TEAC and produces LTRTP reports for selected projects (1st and 2nd reads)
 - LTRTP projects are brought to PJM's Board for approval
 - State-sponsored projects subject to acceptance by sponsoring state(s), *per* SAA

Long-Term Regional Transmission Planning (LTRTP) Review of Manuals

PJM Review of Manuals

- PJM has performed an initial review of existing manual language to identify sections that may require update based on the LTRTP framework discussed at these workshops
- M14B PJM Region Transmission Planning Process
 - Includes specifics on Assumptions, Analysis and Timelines
- M14F Competitive Planning Process
 - Details specifics around proposal window process

LTRTP Concepts Requiring Update

- Timeline 2 Year process \rightarrow 3 year process
- Development of additional LT powerflow cases for years 8 and 15
- Update LT analysis procedures

-DFAX extrapolation to linear interpolation

-Expansion of analysis to include limited N-1-1 and voltage studies

- Update language that defines qualifications for LT needs
- Additional content in establishing assumptions (e.g. capacity expansion, public policy, etc.)
- Outline process for collecting state policy data
- Acceleration of LT projects/Informing NT Projects

M14B Sections

- 1.3 Planning Assumptions and Model Development
 - Seeking input and establishing assumptions
- 2.1 Transmission Planning
 - LT Scenario Analysis
 - Reliability Planning (2.1.2) 3 Year process
- 2.2 RTEP Process Drivers
 - Addition of LTRTP
- 2.3.14 Long Term Reliability Review
- 2.3.15 Stakeholder Review of and input to Reliability Planning
- Attachment B Scope of 15 year plan, Scenario Planning Procedure
- Attachment C Long Term Deliverability Analysis and Upgrades

M14F Sections

- 1.1 Proposal Window Type and Duration
 - Timing of LT proposal window
 - 3 year process
 - Update Exhibit 1
 - 24-Month Reliability Planning Cycle
- 6.1 Proposal Requirements
 - Add requirements specific to LT projects

Exhibit 1: 24-Month Reliability Planning Cycle

Stakeholder Feedback on Workshop 4 Content

Next Steps

- Review any additional feedback and framework updates
- Manual Revisions to follow the normal stakeholder process

Facilitator: Bhavana Keshavamurthy, <u>bhavana.murthy@pjm.com</u>

Secretary: Julia Spatafore, julia.spatafore@pjm.com

SME/Presenters: Asanga Perera, <u>Asanga.Perera@pjm.com</u> Michael Herman, <u>Michael.Herman@pjm.com</u> Jonathan Kern, <u>Jonathan.Kern@pjm.com</u> Emmanuele Bobbio, <u>Emmanuele.Bobbio@pjm.com</u> Long Term Regional Transmission Planning Update

Contact Information

Member Hotline (610) 666 – 8980 (866) 400 – 8980 custsvc@pjm.com

APPENDIX

PJM Planning - Market Efficiency Considerations

- The primary goal of LTRTP is reliability, to ensure a reliable energy transition.
- PJM recognizes the importance of economic efficiencies and accounts for them to a large extent in LTRTP by:
 - Planning for an efficient generation fleet via approximating outcome of an efficient market.
 - Addressing reliability needs to enable the efficient fleet will also create economic efficiencies.
 - Utilizing economic benefits to identify reliability solutions that may be accelerated to maximize social welfare.
 - No Market Efficiency Bright Line test.
- PJM Market Efficiency RTEP Planning Process
 - Existing Order 1000 Competitive Windows Market Efficiency process remains Status Quo
 - It includes Bright Line test (B/C Ratio > 1.25).
 - Addresses congestion drivers as needed for longer term horizon (5-8 years).
 - Annual Acceleration and Reevaluation analyses.
 - Targeted Market Efficiency (TMEP) analysis.

Loss of Load Calculation

- PJM thinks an enhanced reliability metric is needed
 - Other benefits assessed under normal operating conditions
 - More robust transmission helps maintain reliability during extreme events
 - Evaluation must be comprehensive to identify solutions with largest social value
- FERC discussed extreme weather scenario in NOPR and could require it
- FERC order 896 NERC to develop new or modified Reliability Standard concerning extreme weather
- PJM aims to adequately model extreme events
 - PJM will calculate loss of load
 - Monetization may be considered in the future as PJM continues improving extreme weather events' modeling