

Performance Assessment for Primary Frequency Response Update

PFRSTF January 24, 2018

PJM©2017

www.pjm.com

- Summary of changes from previous material
 - Changed Eco Min/Eco Max to Eco Min+ 5%/Eco Max 5%
- Details on event selection
- Rolling Average Scoring
- Operating Priorities
- Tool Overview
- High level performance examples
- Examples of performance assessment

- When we will evaluate a resource to provide PFR:
 - Unit is operating between EcoMin+5% and EcoMax-5%
 - Example: a unit with a Eco Min of 50MW and Eco Max of 300MW would be evaluated for PFR performance between 52.5MW and 285MW
 - And Unit is online providing energy and has available headroom (for low frequency periods) or foot room (for high frequency periods)
 - And / Or Unit is assigned reserves

When will assessment take place?

- PJM will reserve the right to perform performance assessment between 20-30 times a year
 - PJM will aim to find 2-3 frequency events per month for performance assessments, however system conditions may provide less opportunities – no set number of events will be prescribed
 - Events selected will be 'clean' frequency excursions where frequency went outside the dead band and engaged governors
 - Frequency outsides +/- 40mHz
 - Frequency stays outside of dead band for 60 seconds
 - PJM will aim to select events in both directions
 - Events with high frequency (above 60.04) and events with low frequency (below 59.96)

How events are selected

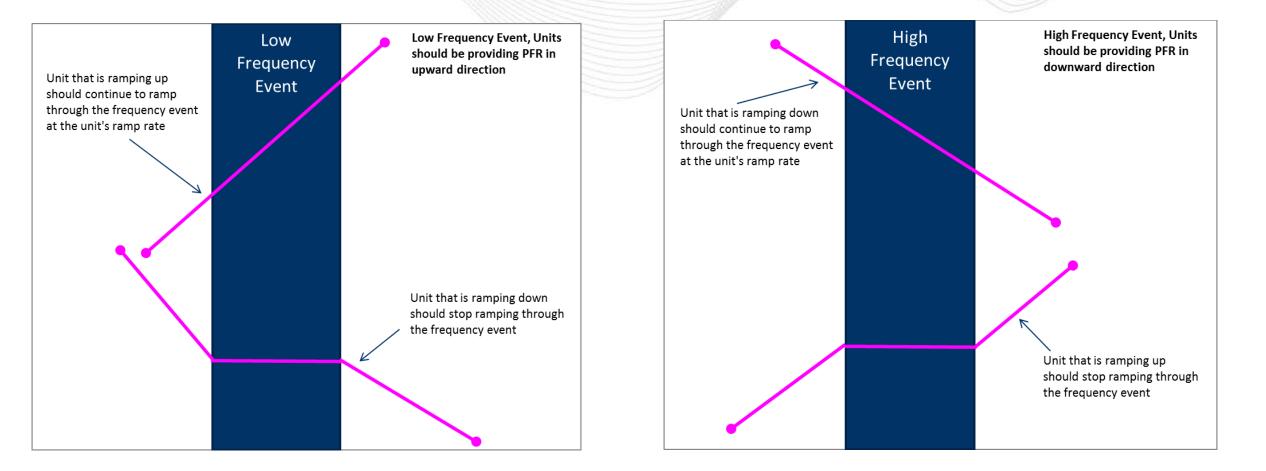
- Events selected will be 'clean' frequency excursions where frequency went outside the dead band and engaged governors
 - Frequency outsides +/- 40mHz
 - Frequency stays outside of dead band for 60 seconds
- PJM will evaluate all events over a monthly period and select the best 2 or 3 events from the month
 - The best events will be evaluated on how far outside the dead bands frequency went and how long frequency deviated.
 - Events could be caused by unit/load loss or just frequency drift.

- Threshold will be set to determine Pass/Fail assessment
 - Unit will need to provide 50% of expected response to Pass (in MW)
 - Pass/Fail assessment will be down on a quarterly basis looks at a 12 month rolling window
 - Response measured within 20-52 seconds (alignment with BAL-003-1)
 - Sustain frequency response out to 60 seconds or duration of event
- Pass/Fail assessment due to some data quality
 - 10 second scan rates
 - Data dead band storage in historian
- Assessments will be performed on market units
 - Further breakdown assessments will be available upon request

- Quarterly assessments looking at 12-month rolling window
 - Assessment performed in Jan will look at all events selected from Jan of the previous year through Dec of the previous year
 - April evaluation will used April of the previous year through March of current year
 - July evaluation will used July of the previous year through June of current year
 - Oct evaluation will used Oct of the previous year through Sept of current year

Rolling Window Scoring

- Scoring will be evaluated as average performance over 12 month window
 - Each event will be evaluated separately and then performance will be average for pass/fail determination
 - 50% or greater average performance will be considered passing
- Units can be evaluated on 20+ events over the 12 month period or just a few
 - Events will be determined on if the unit was expected to respond during the selected events
 - Headroom, Online, Regulation status, etc.



Operating Priorities

- If a unit is providing Energy with set basepoint
 - Provide PFR based on droop characteristics
- If a unit is providing Energy and Ramping Up
 - If LOW frequency event, continue ramping at ramp rate
 - If HIGH frequency event, stop ramping for duration of freq. event
- If a unit is providing Energy and Ramping Down
 - If LOW frequency event, stop ramping for duration of freq. event
 - If HIGH frequency event, continue ramping at ramp rate
- If a unit is providing Regulation
 - Continue providing Regulation, can also provide PFR but will not undergo performance assessment for this event

Unit Ramping and PFR

Tool Overview- Setup & Initial Information

- Initial Data need to set up
 performance assessment
 - Additional data for awareness (ex. fuel type, unit zone, etc.)
- Eco Max/Spin Max data coming from Markets Gateway
 - Important this data is accurate
- Droop/Dead band will be set to PJM requirements (5%/36mHz) unless exception documented

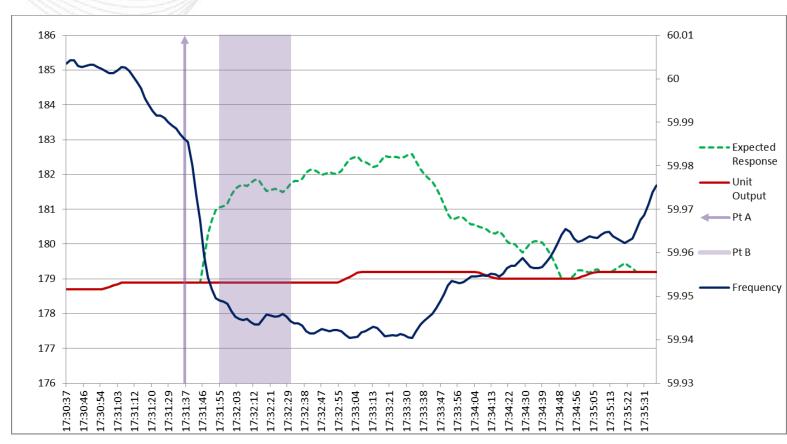
<u>Unit Name</u>	Test Unit	
Frequency:	\\DOR\ca_rt_fq/pjmc:freq-agc freq:hz	Pi Tags for telemetry Data
Unit MW:		used in performance
Spin Max:		evaluation
Econ. BP:		evaluation
Governor Settings		
Mode of Operation:	Droop	Unit's Droop and
Droop (%):	5%	Deadband settings
Deadband (Hz):	0.036	
Econ. Max		
Resource ID:		
Unit Zone:		
Regulation:		If the unit is on for Reg
Current Econ. Max		- Used to calcuate headroom
Current Spin Max		
RPM Installed Capacity:		
Status:	Available	Unit Status
Fuel Type		

Tool Overview- Data Collection

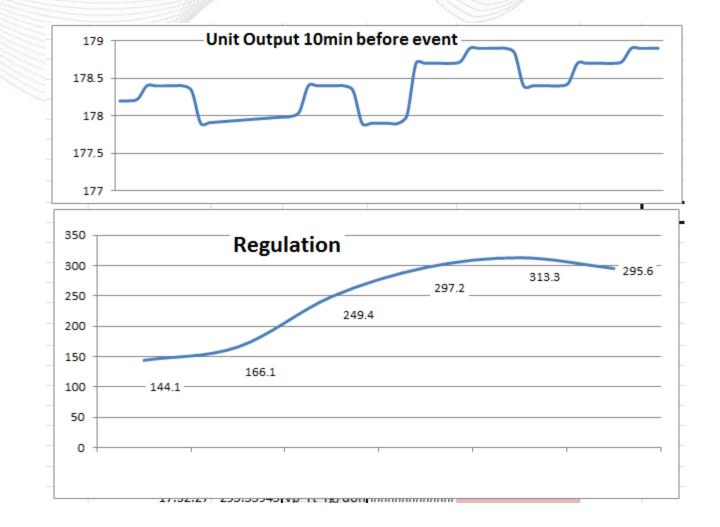
- Data is collected from 1 minute before the event T0 to 5 minutes after the event
 - Frequency, Unit Output, Spin Max, and Eco BP are all collected data
 - FR Capacity is a headroom calculation (Eco Max Unit Output) for low frequency and (Unit Output – Eco Min) for high frequency
 - Droop Coefficient and Expect Response is the calculated response
 - Regulation and Output Before Event used for situational awareness to make sure the performance assessment is done correctly

	Date/Time	Frequency	Unit Output	Spin Max	FR Capacity	Droop Coefficient	Expected Response	EcoBP	Regulation	OUTPUT BEFORE EVENT
17:30:37	05-Dec-15 17:30:37	60.00350189	178.6999969	605	426.300003	1.33%	178.6999969	179	0	178.1999969
17:30:39	05-Dec-15 17:30:39	60.00422668	178.6999969	605	426.300003	1.36%	178.6999969	179		178.1999969
17:30:41	05-Dec-15 17:30:41	60.00427628	178.6999969	605	426.300003	1.36%	178.6999969	179		178.226944
17:30:43	05-Dec-15 17:30:43	60.00301743	178.6999969	605	426.300003	1.32%	178.6999969	179		178.3999939
17:30:45	05-Dec-15 17:30:45	60.00273895	178.6999969	605	426.300003	1.31%	178.6999969	179		178.3999939
17:30:47	05-Dec-15 17:30:47	60.00299835	178.6999969	605	426.300003	1.32%	178.6999969	179		178.3999939

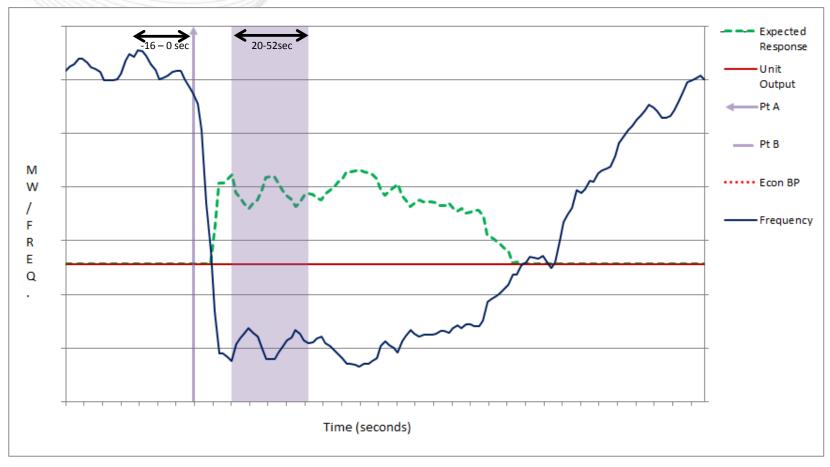
Tool Overview- Point A and B Calculation


- Two points within the data are calculated to be used in the performance evaluation
 - Expected and Actual response at Point A, measured from -16 to 0sec before the event
 - Expected and Actual response at Point B, measured from 20 to 52 sec after the event

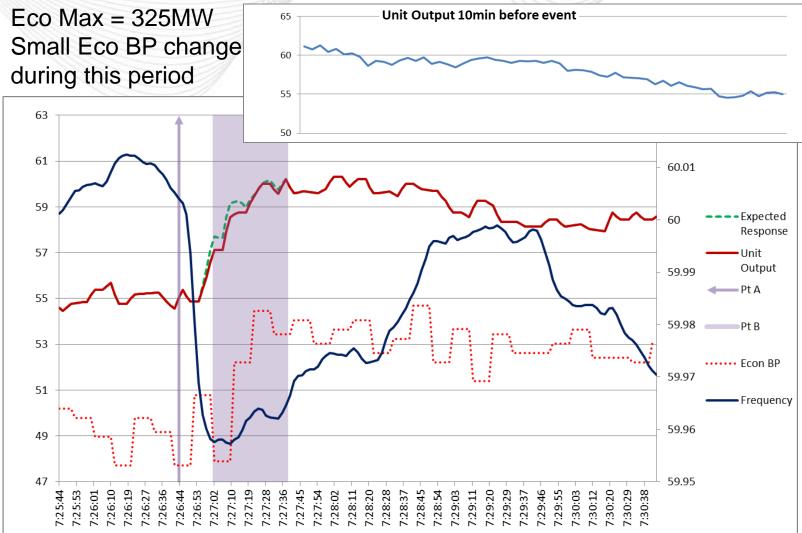
	17:31:23	05-Dec-15 17:31:23 59.99150085	178.8999939	605 426.100006	0.93%
	17:31:25	05-Dec-15 17:31:25 59.99150085	178.8999939	605 426.100006	0.93%
	17:31:27	05-Dec-15 17:31:27 59.9910202	178.8999939	605 426.100006	0.91%
	17:31:29	05-Dec-15 17:31:29 59.99001694	178.8999939	605 426.100006	0.88%
	17:31:31	05-Dec-15 17:31:31 59.98925781	178.8999939	605 426.100006	0.85%
Expected	Actual 17:31:33	05-Dec-15 17:31:33 59.98851776	178.8999939	605 426.100006	0.83%
	Point A 17:31:35	05-Dec-15 17:31:35 59.98727417	178.8999939	605 426.100006	0.79%
178.9	178.9 17:31:37	05-Dec-15 17:31:37 59.98625946	178.8999939	605 426.100006	0.75%
	17:31:39	05-Dec-15 17:31:39 59.98551178	178.8999939	605 426.100006	0.73%
	17:31:41	05-Dec-15 17:31:41 59.9801445	178.8999939	605 426.100006	0.54%
	17:31:43	05-Dec-15 17:31:43 59.97330856	178.8999939	605 426.100006	0.31%
	17:31:45	05-Dec-15 17:31:45 59.96741867	178.8999939	605 426.100006	0.12%
	17:31:47	05-Dec-15 17:31:47 59.95941925	178.8999939	605 426.100006	-0.15%
	17:31:49	05-Dec-15 17:31:49 59.95429611	178.8999939	605 426.100006	-0.33%
	17:31:51	05-Dec-15 17:31:51 59.95155334	178.8999939	605 426.100006	-0.42%
	17:31:53	05-Dec-15 17:31:53 59.9495163	178.8999939	605 426.100006	-0.49%
	17:31:55	05-Dec-15 17:31:55 59.94900131	178.8999939	605 426.100006	-0.51%
	Point B 17 31:57	05-Dec-15 17:31:57 59.94875717	178.8999939	605 426.100006	-0.51%
181.6	178.9 17:31:59	05-Dec-15 17:31:59 59.94825745	178.8999939	605 426.100006	-0.53%
	17:32:01	05-Dec-15 17:32:01 59.94653702	178.8999939	605 426.100006	-0.59%
	17:32:03	05-Dec-15 17:32:03 59.94524384	178.8999939	605 426.100006	-0.63%
	17:32:05	05-Dec-15 17:32:05 59.94477463	178.8999939	605 426.100006	-0.65%
	17:32:07	05-Dec-15 17:32:07 59.9444809	178.8999939	605 426.100006	-0.66%
	17:32:09	05-Dec-15 17:32:09 59.94475937	178.8999939	605 426.100006	-0.65%
	17:32:11	05-Dec-15 17:32:11 59.9440155	178.8999939	605 426.100006	-0.67%
	17:32:13	05-Dec-15 17:32:13 59.94350052	178.8999939	605 426.100006	-0.69%
	17:32:15	05-Dec-15 17:32:15 59.94350052	178.8999939	605 426.100006	-0.69%
	17:32:17	05-Dec-15 17:32:17 59.94470978	178.8999939	605 426.100006	-0.65%
	17:32:19	05-Dec-15 17:32:19 59.945755	178.8999939	605 426.100006	-0.62%
	17:32:21	05-Dec-15 17:32:21 59.94549942	178.8999939	605 426.100006	-0.62%
	17:32:23	05-Dec-15 17:32:23 59.94525909	178.8999939	605 426.100006	-0.63%
	17:32:25	05-Dec-15 17:32:25 59.94548416	178.8999939	605 426.100006	-0.62%
	17:32:27	05-Dec-15 17:32:27 59.94599915	178.8999939	605 426.100006	-0.61%
	17:32:29	05-Dec-15 17:32:29 59.94527054	178.8999939	605 426,100006	-0.63%


Tool Overview- Response Graph

- The full set of data is graphed
 - Event Data: Frequency
 Profile and Point A and
 Point B of the event
 - Unit Data: Unit output and Expected response

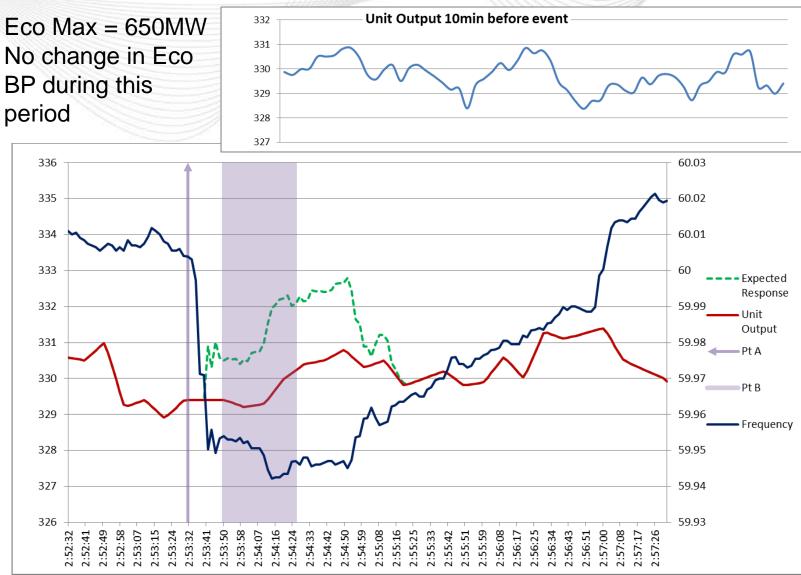

Tool Overview- Additional Data Graphs

- The addition data is also graphed
 - Unit Output 10min before the event shows the unit behavior before the event (ramping, etc.)
 - Regulation graph shows if the unit was providing regulation during the event time period


Example Response

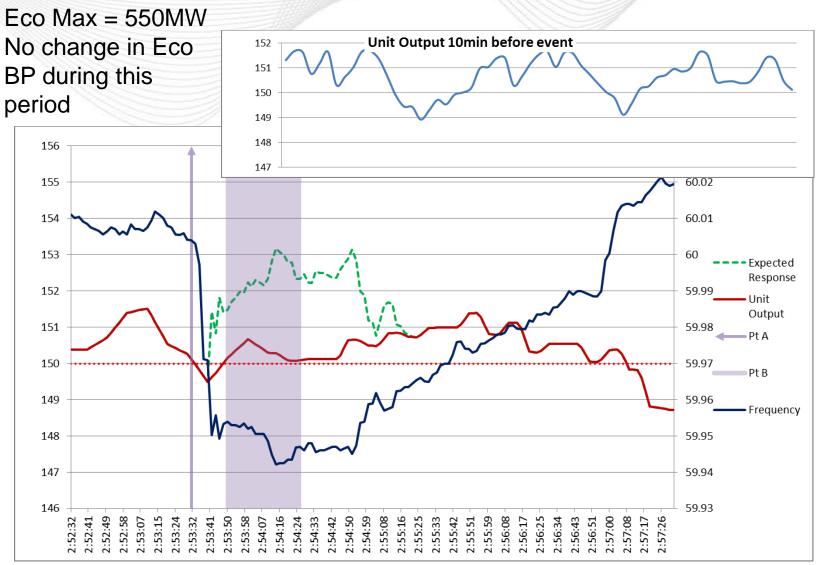
- Example Data
- Low Frequency Event
- No requested ramping, unit will be evaluated on droop characteristics
- Evaluation done on average <u>actual</u> <u>output</u> at 20-52 sec AFTER frequency event compared to average <u>expected</u> <u>output</u> 20-52 sec AFTER frequency event
 - Expected response= average MW of green dotted curve in purple band

- Point A
 - Starting MW = 55.1
- Point B
 - Expected MW= 59.3
 - Actual MW= 59.0
- Response
 - Expected:59.3-55.1 = 4.2MW
 - Actual:59.0–55.1= 3.9MW
- Performance Assessment
 - 1 (Expected MW Actual MW)/(Expected MW)
 - 1-((4.2- 3.9)/4.2) = 93%
 - PASS



17

Unit not responding


- Point A
 - Starting MW = 329.1
- Point B
 - Expected MW=331.2
 - Actual MW= 329.5
- Response
 - Expected:331.2 329.1 = 2.1MW
 - Actual: 329.5 329.1 =
 0.4MW
- Performance Assessment
 - 1 (Expected MW Actual MW)/(Expected MW)
 - 1-((2.1-0.4)/2.1) = 19.1%
 - FAIL

- Point A
 - Starting MW = 150.5
- Point B
 - Expected MW= 152.4
 - Actual MW= 150.3
- Response
 - Expected:152.4 –150.5 = 1.9MW
 - Actual: 150.3 150.5 = 0.2MW
- Performance Assessment
 - 1 (Expected MW Actual MW)/(Expected MW)
 - 1-((1.9--0.2)/1.9) = -11%
 - FAIL

Performance Assessment for Primary Frequency Response

PFRSTF December 1, 2017

www.pjm.com

- Resources expected performance will be calculated with the primary frequency control calculation
 - Frequency below governor dead band

 $MW_{Pr imaryControl} = \left[\frac{\left(HZ_{actual} - 60 + DB\right)}{\left(60 * Droop - DB\right)}\right] * (Frequency \text{Re sponsiveCapacity}) * (-1)$

- Frequency above governor dead band $MW_{Pr imaryControl} = \left[\frac{(HZ_{actual} - 60 - DB)}{(60*Droop - DB)}\right]*(Frequency \text{Re sponsiveCapacity})*(-1)$
- 36mHz deadband (or less), 5% droop (or less)
 - Calculation will be performed with 36mHz and 5% droop unless different settings are communicated to PJM

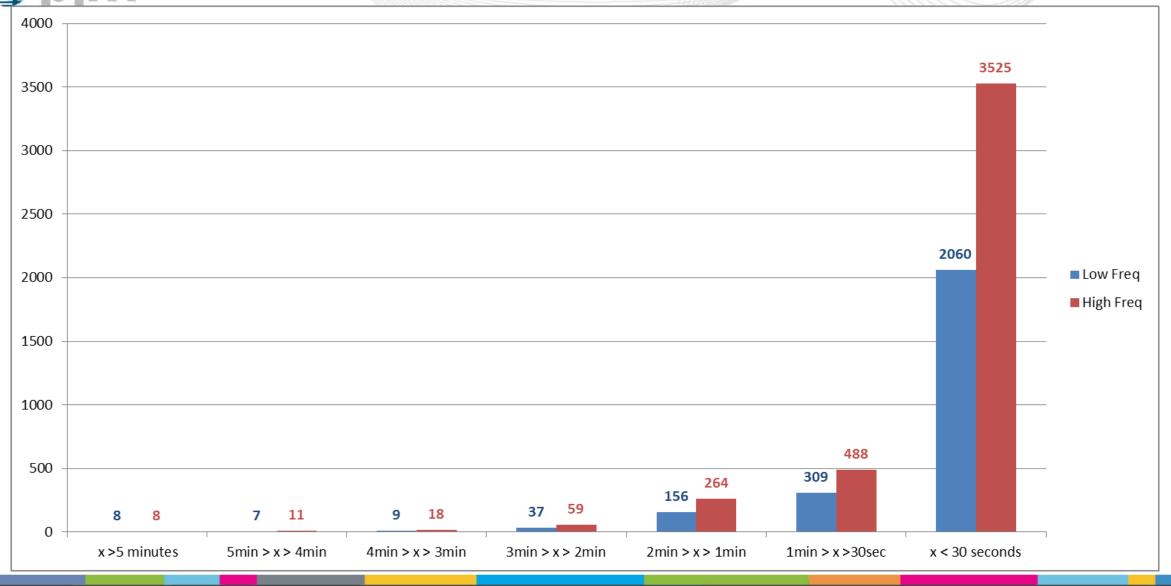
- Threshold will be set to determine Pass/Fail assessment
 - Unit will need to provide 50% of expected response to Pass (in MW)
 - Pass/Fail assessment will be down on a quarterly basis looks at a 12 month rolling window
 - Response measured within 20-52 seconds (alignment with BAL-003-1)
 - Sustain frequency response out to 60 seconds or duration of event
- Pass/Fail assessment due to some data quality
 - 10 second scan rates
 - Data dead band storage in historian
- Assessments will be performed on market units
 - Further breakdown assessments will be available upon request

When will assessment take place?

- PJM will reserve the right to perform performance assessment between 25-35 times a year
 - PJM will aim to find 2 frequency events per month for performance assessments, however system conditions may provide less opportunities – no set number of events will be prescribed
 - Events selected will be 'clean' frequency excursions where frequency went outside the dead band and engaged governors
 - Frequency outsides +/- 40mHz
 - Frequency stays outside of dead band for 60 seconds
 - PJM will aim to select events in both directions
 - Events with high frequency (above 60.04) and events with low frequency (below 59.96)

When will assessment take place?

- Process for non-performance
 - PJM will review first failed PFR assessment with stakeholder to discuss details of failed response
 - This is to ensure that failed attempt is not due to data issues, maintenance issues, etc.
 - This is a one-time review for PJM and the participant to work through any issues that are uncovered
 - Subsequent failed PFR assessment will be referred to IMM/FERC for follow-up
 - Participants will have the opportunity to provide data to document performance before referral if data issues are assumed for the failure
 - No monthly payments for cost of service until demonstrated successful performance (TBD based on compensation discussion)



- When we will evaluate a resource to provide PFR:
 - Unit is operating between Eco Min+5% and Eco Max-5%
 - Example a unit with a Eco Min of 50MW and Eco Max of 300MW would be evaluated for PFR performance between 52.5MW and 285MW
 - And Unit is online providing energy and has available headroom (for low frequency periods) or foot room (for high frequency periods)
 - And/Or Unit is assigned reserves

- When we will not evaluate a resource to provide PFR:
 - Unit is not currently providing real-time energy/reserves
 - Or Unit is not operating between Eco Min and Eco Max
 - Or Unit has an exception
 - Long-term exception developed through the exception process
 - Short-term exception based on current operating parameters
 - Documented in EDART max 30 day exception
 - Or Unit is providing regulation

Frequency Profile Nov 2016 – Oct 2017

