Suggested Modifications to the Minimum and Mark-to-Market Credit Proposals Suffolk Fund, LLC

Credit should be proportional to maximum expected loss

- The purpose of credit is to cover losses in case of an adverse outcome
- This loss can be represented by Value at Risk (VaR), which is the greatest possible loss in 95% of outcomes
- Value at Risk is given by $VaR = 1.64 * \sigma_p * V$ where V is portfolio volume and σ_p is portfolio volatility
- So total credit for a portfolio is influenced by 1) volume of the portfolio and 2) portfolio's volatility

Background: There is no relationship between volatility and portfolio volume

- A tiered approach to minimum credit rates based on portfolio volume suggests that larger portfolios are more "diversified" and have lower risk per MWh than smaller portfolios
- Portfolio volatility is given by $\sigma_p = \sqrt{w^T \Omega w}$

where σ_p is portfolio volatility, Ω is variance-covariance matrix (individual path volatility and inter-path correlation), w is relative weights, and w^T is w transposed

- Since there is no volume factor, the marginal risk per MWh of an FTR portfolio is independent of volume
- Therefore, larger portfolios should not receive lower minimum credit per MWh based on volume alone

Examples of larger portfolios having higher expected loss per MWh

Variance-covariance matrix for 5 paths:

Path	Volatility
А	2.4727
В	8.5647
С	11.0657
D	0.1562
Е	0.0089

Variance-covariance 16.7978 -7.8692 -0.2837 -0.0120 6.1140 -41.4122 -1.0781 16.7978 73.3537 -0.0529 -7.8692 -41.4122 122.4504 1.2283 0.0745 -0.2837 -1.0781 1.2283 0.0244 0.0010 -0.0120 -0.0529 0.0745 0.0010 0.0001

Example 1: Larger portfolio on few paths vs. small portfolio on more paths

Volume										
Path	Portfolio 1	Portfolio 2								
А	500	10								
В	500	10								
С	0	10								
D	0	10								
E	0	10								
·										
Portfolio volatility	5.32	2.34								
-										
95% VaR:	\$8,719.16	\$191.77								

\$8.72

\$3.84

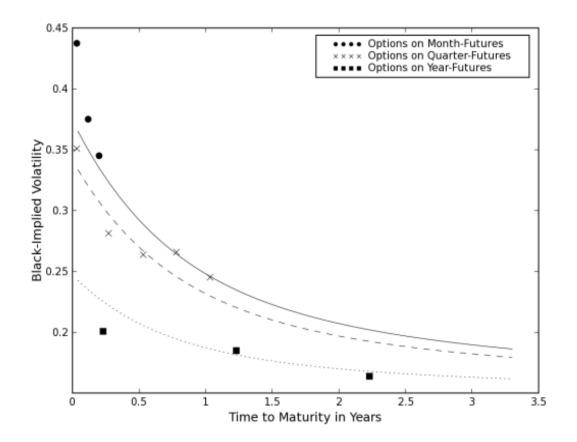
VaR/MWh:

Example 2: Larger portfolio on more paths vs. small portfolio on few paths

Volume									
Path Portfolio 3									
500	0								
500	0								
500	0								
500	10								
500	10								
	Portfolio 3 500 500 500 500								

Portfolio volatility	2.34	0.08

95% VaR:	\$9,588.38	\$2.67
VaR/MWh:	\$3.84	\$0.13


Suggestion: Set minimum credit \$/MWh by path based on individual path volatility

• The previous example also demonstrated that individual path volatility has a significant impact on portfolio risk

Volatility bucket	Credit rate (\$/MWh)
x < 0.50	\$0.01
0.50 < x < 5	\$0.10
x > 5	\$0.25

- This is easily implemented on a path-by-path basis, similarly to the reference price calculation, by taking the standard deviation of the average monthly MCC spreads
- Alternatively, downside deviation could be used in place of standard deviation to quantify the adverse risk without penalizing positive jumps

Background: Volatility is not constant in time

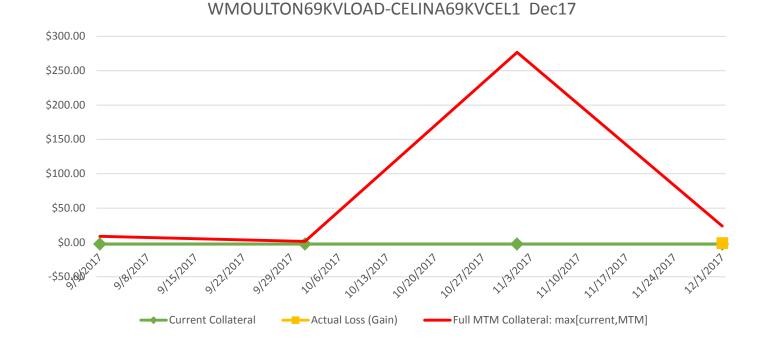
- The volatility of MCPs for long-term FTRs is low compared to the volatility for prompt month FTRs
- Volatility increases because as the delivery month approaches, more information (e.g. outage and weather forecasts) is available that may cause price fluctuations
- Since volatility is lower for back-month FTRs delivered far in the future, the minimum \$/MWh rate should be lower initially and should increase as the delivery month approaches

Chart from http://www.uni-ulm.de/fileadmin/website_uni_ulm/mawi.inst.050/people/kiesel/publications/articleresubmitv1008.pdf

Suggestion: Tier Minimum \$/MWh with respect to time to delivery

	Months to term										
	Prompt 2-3mos 4-11mos 12-										
Min \$/MWh	\$0.25	\$0.15	\$0.05	\$0.01							

Note: Proposed tiers are placeholder suggestions

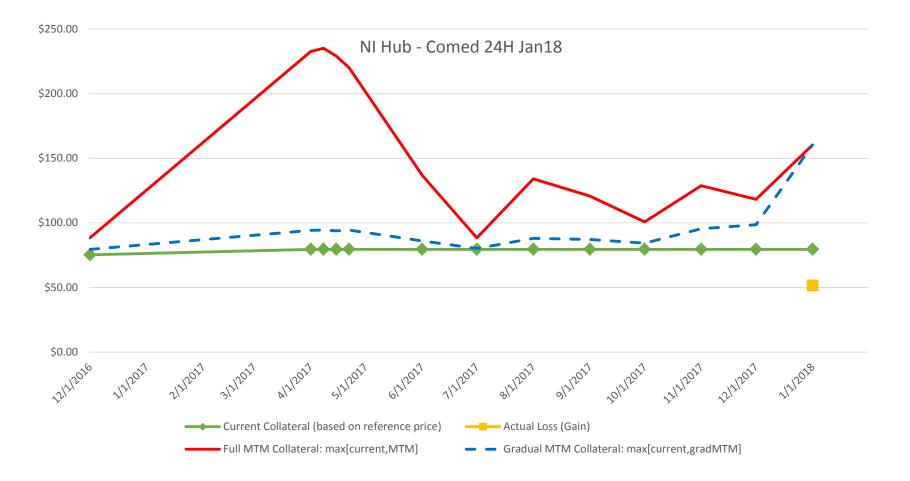

FTR Term						PY18-19													
Mar-18 Apr-18 May-18 Jun-18				Jul-18	Aug-18	Sep-18	Oct-18	Nov-18	Dec-18	Jan-19	Feb-19	Mar-19	Apr-19	May19	PY19-20	PY20-21	PY21-22		
Auction	Mar-18	0.50	0.25	0.25	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	Apr-18		0.50	0.25	0.25	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.01	0.01	0.01	0.01	0.01	0.01
	Annual		0.50	0.25	0.25	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.01	0.01	0.01	0.01	0.01	0.01
	May-18			0.50	0.25	0.25	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.01	0.01	0.01	0.01	0.01
	Jun-18				0.50	0.25	0.25	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.01	0.01	0.01	0.01
	LT					0.50	0.25	0.25	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.01	0.01	0.01

Benefits:

- Allocates credit based on level of risk
- Mechanics for monthly recalculation of minimum credit could be identical to that for yearly reference price update
- Simple to calculate, since portfolio-months are already calculated independently

Challenges with the Mark-to-Market concept

- Auctions are held once a month yielding little visibility into the fair market price and offer infrequent opportunities to correct price swings
- Other markets employing mark-to-market to calculate collateral are continuously traded where price anomalies are traded back to the fair price in a short period of time
- Mark-to-Market will cause regular (potentially large) fluctuations in credit requirement



Suggestion: Apply gradual mark-to-market approach

- Leverages the fact that participants have more information to accurately forecast congestion in the prompt month than in earlier months
- Reduces the \$ amount and frequency of collateral calls

Another example

