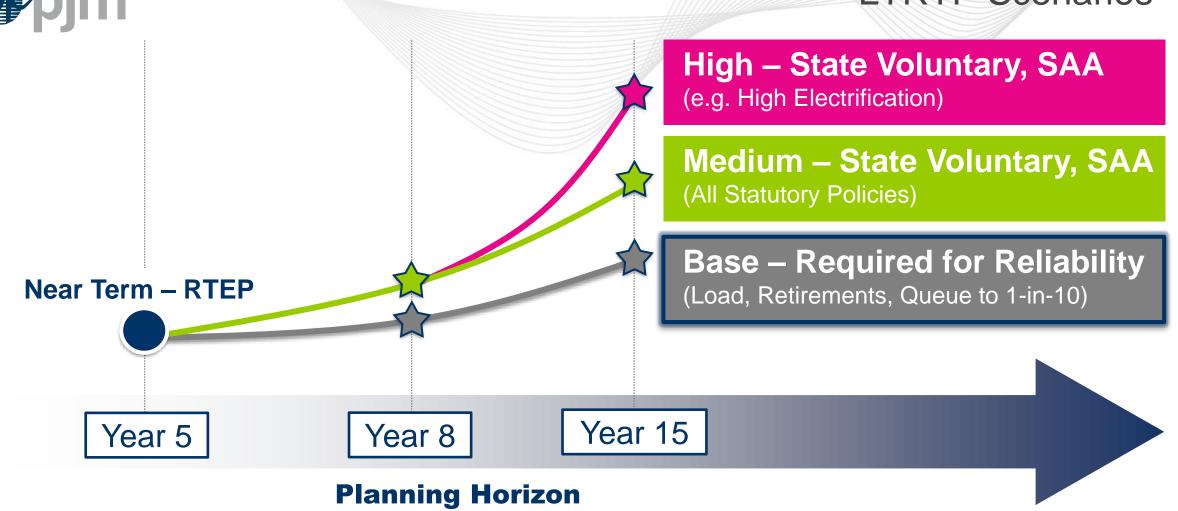


Long-Term Regional Transmission Planning

Asanga Perera, Sr. Manager – Scenario Analysis and Special Studies

Presented to ISAC December 18, 2023



- LTRTP replacement generation methodology
- Market efficiency analysis
- LTRTP Analysis pillar

LTRTP Replacement Generation Methodology

LTRTP Scenarios

• PJM can consider performing sensitivities, e.g. for lower data center load

Matrix – Policies by LTRTP Scenario

	Legend							
Policies 🖈	 PJM's annual load forecast Not Included Included 	Base	Medium	High				
Load Policies	*(e.g. Electrification, BTM)			High				
Federal Polic	y Retirements (e.g. EPA)							
State Policy F	Retirements (e.g. CO ₂ , CEJA)			I				
Inflation Redu	action Act							
Replacement (e.g. RPS, Offs	s/Generation Policies	Use queue to meet 1-in-10	Statutory	Statutory/ Objectives				

Notes: Initial position on assumptions to be included in each scenario that will be further discussed in the assumption meetings; Sensitivities for econ. atrisk units and state policy retirements; * Includes Data Centers;

Replacement Generation Illustration

Background

- Existing generation is mainly thermal
- 98% of pre-ISA MW is renewables or storage

Generation Replacement Approach

Medium Scenario Replacements

- Use queue data and state-identified locations
- Select projects with capacity expansion to meet load given retirements and policies

Base Scenario

- Keep only queue projects
- Add/remove/scale projects until 1-in-10 based on economics

Queue and State-Identified Locations

Capacity ExpansionLoadPoliciesFuel PricesRetirementsTechnology

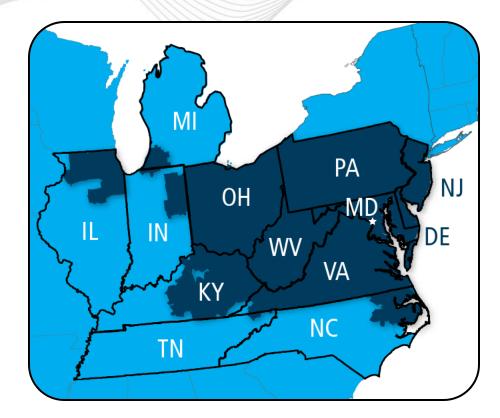
Medium Scenario

- Keep Queue Projects
- Add/Remove/Scale
 Projects until 1-in-10

Base Scenario

Market Efficiency Analysis

Apjm


PJM Market Efficiency Overview

The PJM Market Efficiency process simulates the electric market using production costing software to:

- Understand internal and interregional congestion
- Assess future market congestion
- Approve economic-based transmission upgrades

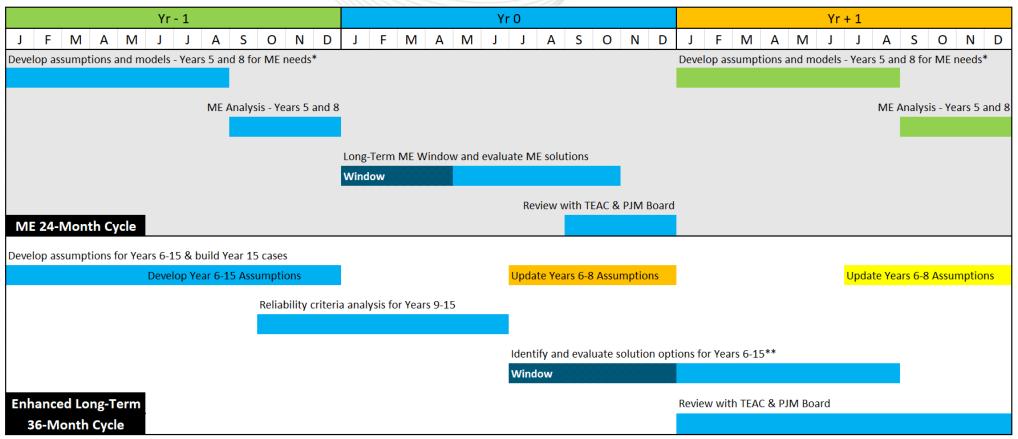
Congestion is a measure of the extent to which marginal generating units are dispatched to serve load due to transmission constraints.

Congestion occurs when available, least-cost energy cannot be delivered due to transmission constraints. As a result, higher-cost units must be dispatched to meet load.

Market Efficiency Analysis Objectives

Long-Term Window

Identify new transmission projects that address target congestion drivers


Re-evaluation Analysis

Review cost and benefits of economic-based transmission projects included in the RTEP to assure that they continue to be cost beneficial

Acceleration Analysis

Determine which reliability-based transmission projects, if any, have an economic benefit if accelerated or modified

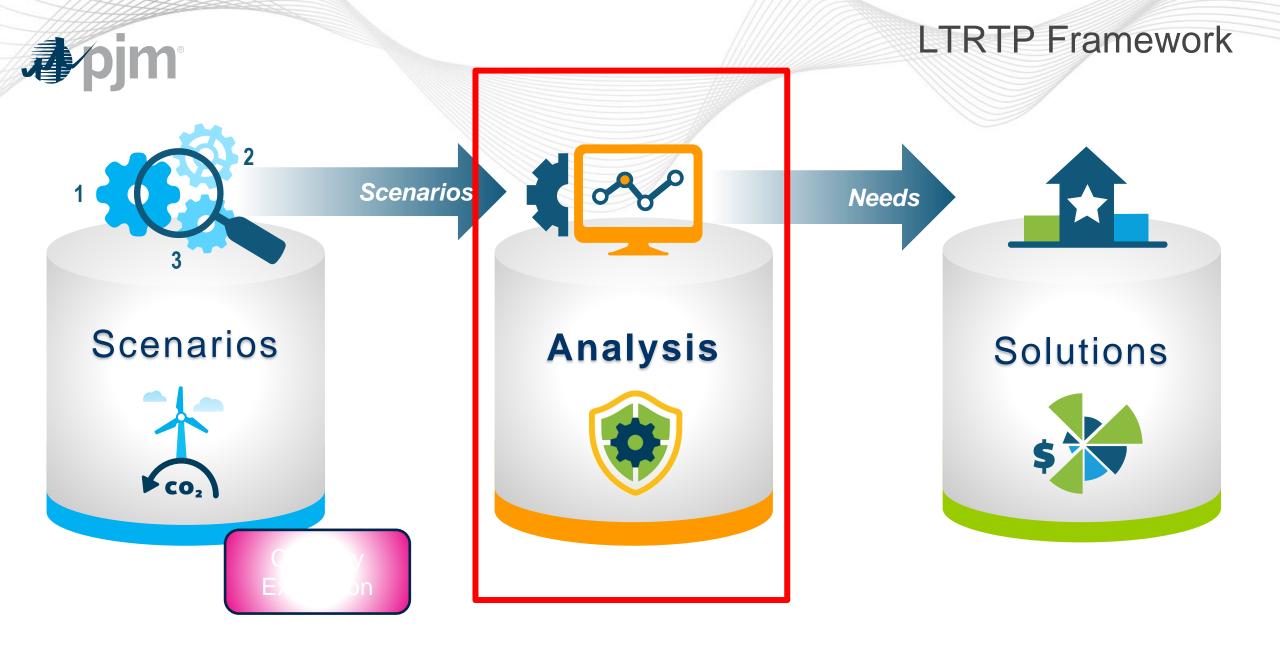
Recommended Enhancements To Long-Term Planning Process – ME vs LTRTP Cycles

* Years 5 and 8 models are developed to determine ME needs, additional years are developed for solution evaluation.

** Seek transmission solutions for less complex needs in the near-term 18-month cycle window, and address remaining more complex needs in the long-term 36-month cycle window

LTRTP Benefit Metrics

 Benefit metrics identify long-lead transmission solutions that maintain reliability or address SAA needs at the lowest possible system cost


	Benefit Metrics				
System _ Cost	Energy Market Benefits	1. Production Cost Savings			
	Capital Investment Benefits	2. Avoided Generation Investments			
		3. Avoided Transmission Investments			
	Enhanced Reliability Benefits	4. Reduced Loss of Load			

• Alternative benefit metrics are *comprehensive* load payments + enhanced reliability benefits

 Δ Load Payments = Δ System Costs + Δ Profits

LTRTP Analysis Pillar

Long-Term Planning Process

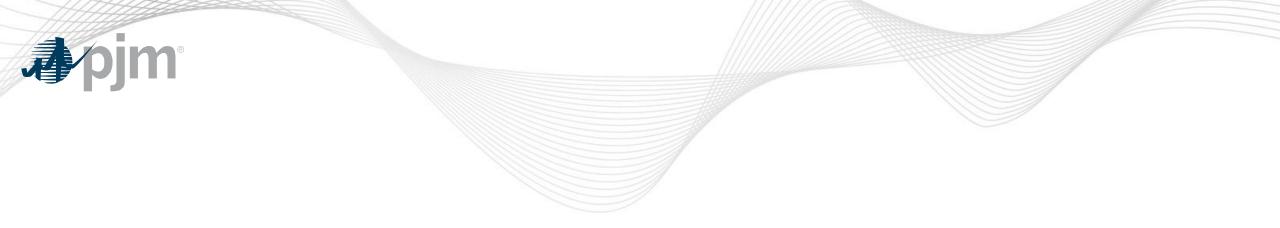
- Extend two year cycle to three year cycle to account for additional scenarios, sensitivities and transmission needs
- Supplement 8 year power flows with 15 year power flows
 - 8 year power flow model will be used to perform both thermal and voltage analysis and will replace the 10 year model used for voltage analysis
 - 15 year model will be used to perform thermal analysis and limited voltage analysis
 - Medium/High/Base scenarios
 - Linear interpolation using year 5, 8 and 15 thermal analysis to determine required in-service dates

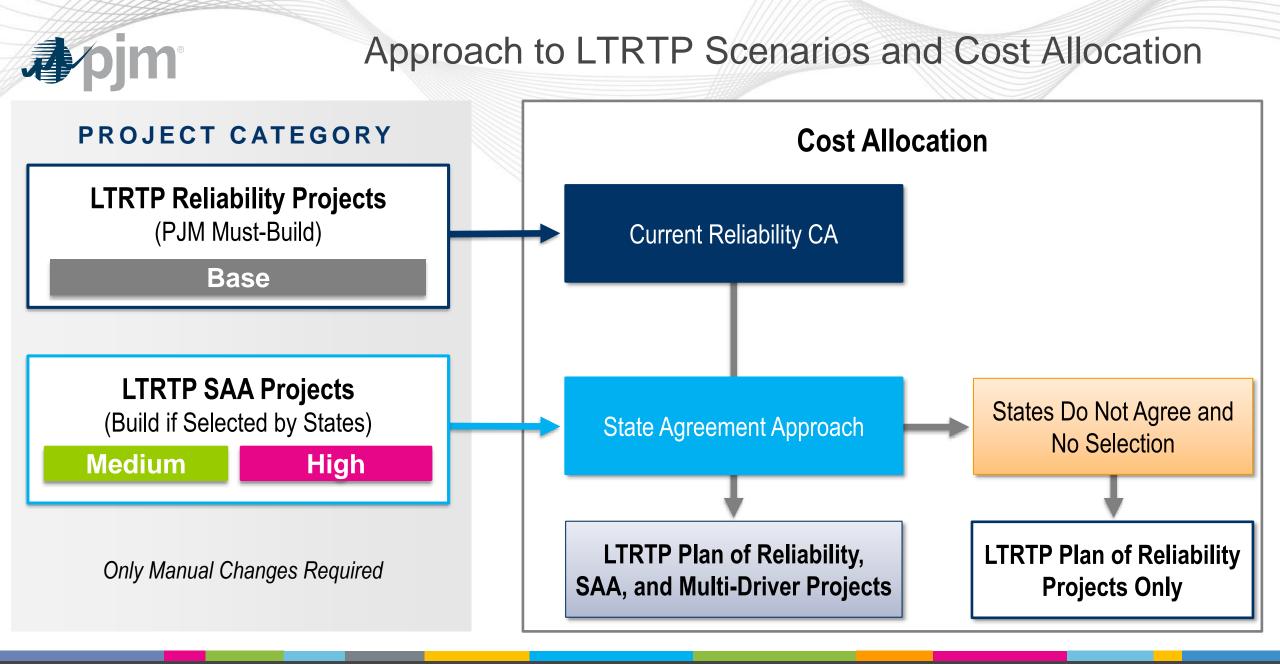
Reliability Criteria Analysis For Years 8 & 15

- N-1, generator & load deliverability (years 8 & 15)
 - Thermal analysis monitored facility (ignore terminal limits) and contingency kV levels
 - Year 8: Same as year 5
 - Year 15: 230 kV+
 - Voltage analysis monitored facility and contingency kV levels
 - Year 8: 230 kV+
 - Year 15: 500 kV+
 - Contingency Types
 - Singles & Towers (Year 8 and 15)
 - Stuck breakers and bus faults (Year 8 only)
- N-1-1 (year 8 only)
 - Thermal & voltage analysis focusing on 230 kV+ monitored facilities and contingencies

Next Steps

• First read of LTRTP manual language expected to occur at Jan. 9 Planning Committee




Presenters: Asanga Perera, Asanga.Perera@pjm.com

Independent State Agencies Committee

Member Hotline (610) 666 – 8980 (866) 400 – 8980 custsvc@pjm.com

Appendix

Benefit Metrics – Approach

Latest Approved Near-Term RTEP

Latest Approved Long-Term RTEP

Capacity Expansion, Reliability, Production Cost Models

System Cost + Enhanced Reliability

Latest Approved Near-Term RTEP

Latest Approved Long-Term RTEP

Current Cycle Long-Term RTEP

Capacity Exp<mark>ansio</mark>n, Reliability, Production Cost Models

System Cost + Enhanced Reliability

∆ Benefits

Benefits are calculated for Reliability and SAA Solutions

PJM will consider calculating zonal benefits (But may be easier with load payments)

Reliability Model Building

- The LTRTP process will begin every three years in January
- During the first year of the three year cycle, a set of assumptions for years 6-15 will be developed and intermediate-term (year 8) and long-term (year 15) power flow models will be built
 - Develop year 8 and 15 cases in parallel with year 5 cases after capacity expansion developed
 - Seek transmission solutions for less complex needs in the near-term18-month cycle window, and seek remaining more complex needs in the long-term 36month cycle window
 - PJM will determine on a case by case basis which needs will be considered complex based largely on the concentration, magnitude and voltage level of reliability violations in a particular area of the system

Required In-Service Date For Years 6-15

- Replace DFAX extrapolation with linear interpolation of thermal results from year 5, 8 and 15 analyses to determine required inservice dates
 - Use year 5 and year 8 thermal loadings from generator deliverability, load deliverability and N-1-1 to determine year 5-8 required in-service dates
 - Use year 8 and year 15 thermal loadings from generator and load deliverability to determine year 8-15 required in-service date

Line A-B loading increase from Years 5 through Year 15 using linear interpolation of Year 5, 8 and 15 loadings

		Rating											
L	.ine	(MVA)	Yr 5	Yr 6	Yr 7	Yr 8	Yr 9	Yr 10	Yr 11	Yr 12	Yr 13	Yr 14	Yr 15
4	4-B	3500	98.0%	98.3%	98.6%	98.9%	99.2%	99.5%	99.8%	100.1%	100.4%	100.7%	101.0%