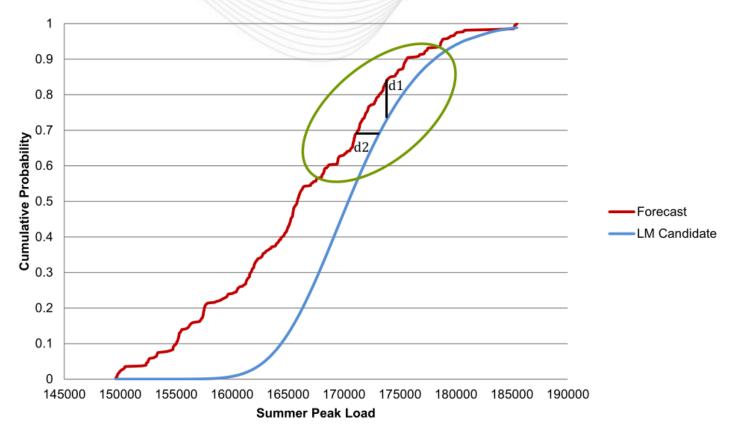


PJM Load Model Selection for 2022 Reserve Requirement Study (RRS)

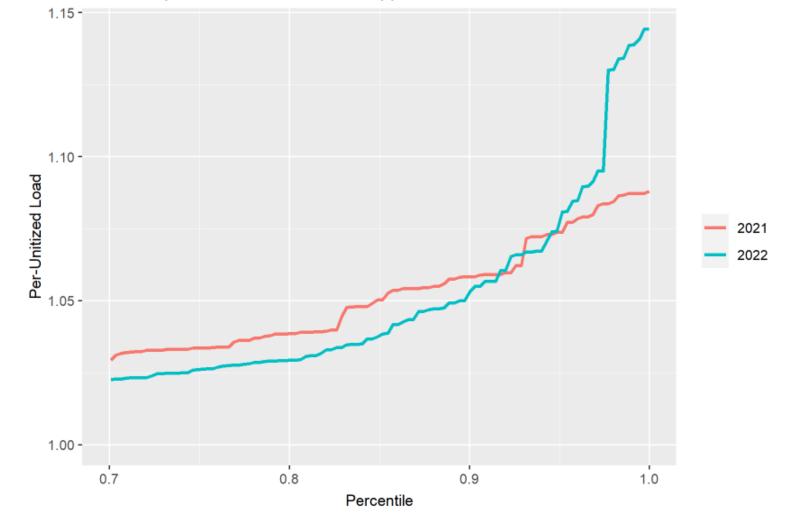
Patricio Rocha Garrido Sr. Lead Engineer, Resource Adequacy Planning Planning Committee July 12, 2022



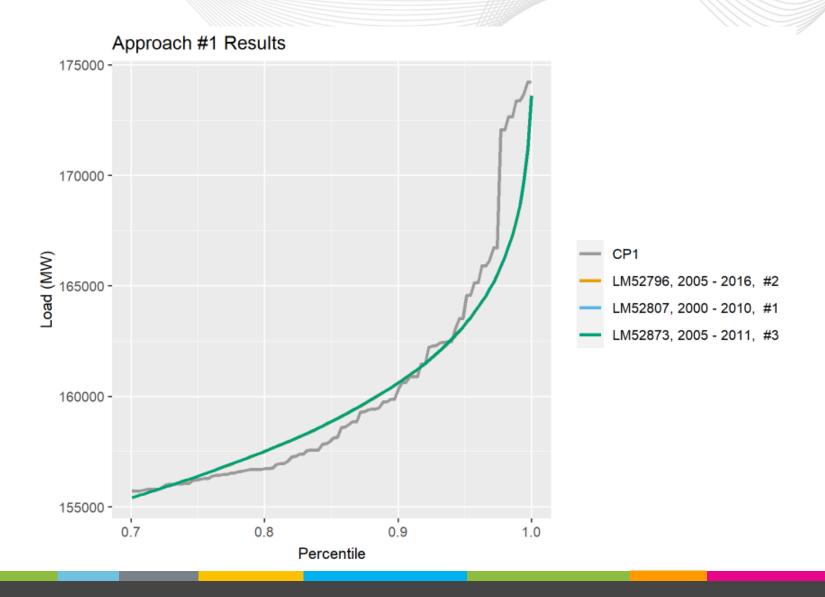
- The Load Model Selection analysis is performed due to the fact that the Coincident Peak distributions from the PJM Load Forecast cannot be used directly in PRISM
- The analysis is based on method approved at June 9, 2016 PC meeting (Appendix V in 2016 RRS Assumptions Letter)
 - Selected Load Model should be a good match of CP1 distribution from PJM load Forecast
 - Consideration of historical PJM / World load diversity
- This year the analysis is based on the 2022 Load Forecast Report. Focus is on 2026/27 Delivery Year.

Load Model Candidate vs CP1 from Load Forecast

Peak Day (CP1) Cumulative Distribution



- A total of 136 Load Models are examined
 - Ranging from a 22-year Load Model (i.e. calculated using data from a 22 year period) to several 7-year Load Models
 - Load Models built with less than 7 years of data are not considered


Load Forecast Model CP1 Distribution - 2022 vs 2021

CP1 Comparison: 2022 vs 2021 - Upper 30th Percentile

Approach $1 - 70^{th}$ percentile and above

Approach $2 - 70^{\text{th}}$ percentile and above

Approach #2 Results 1.0 -0.9 -CP1 Percentile LM52809, 2002 - 2012, #1 LM52825, 2002 - 2011, #3 LM52870, 2002 - 2008, #2 0.8 -0.7 -155000 160000 165000 170000 175000 Load (MW)

Results from Approaches #1 and #2

- The top ranked models from Approaches 1 and 2 do not match
- Approach #1. Top ranked
 - 52807: 2000-2010
 - 52796: 2005-2016
 - 52873: 2005-2011
- Approach #2. Top Ranked
 - 52809: 2002-2012
 - 52870: 2002-2008
 - 52825: 2002-2011

- In prior years, the results from Approach #2 have taken precedence due to the fact that Approach #2 is based on an analytical method (whereas Approach #1 is based on sampling)
- Also, the above decision has been supported by analysis showing that there is convergence in the results between Approaches #1 and #2 when Approach #1 is restricted to analyzing between the 70th and 95th percentiles of the distribution
- This year such convergence does not exist

PJM Selected Load Models

- Load Model Choices
 - 52807: 2000-2010
 - 52809: 2002-2012
- The above selected load models are the top performers in Approaches #1 and #2, respectively.
- To decide between them, PJM analyzed the overall performance of the load models under **both** approaches
- As a side note, last year's selected load model (2001-2013) is not one of the choices above

PJM Selected Load Models

- Load Model #52807: 2000-2010
 - Ranked 1st under Approach #1
 - Ranked 15th under Approach #2
- Load Model #52809: 2002-2012
 - Ranked 1st under Approach #2
 - Ranked 79th under Approach #1
- Load Model #52807: 2000-2010 has a better overall performance under both approaches

Apjm

World Load Models

- To analyze PJM/World peak load diversity, World Load Models were created using the PLOTS program, observing the same historical time periods
 - Uses historical coincident peak pattern
 - World defined as MISO, NY, TVA, and VACAR.

LM #52807 (2000-2010) - PJM vs World Assessment

		PJM RTO LM #52807 11 Yr Load Model - 2000 - 2010	World Region LM #52896
Month	WK#	Per-Unitized Peak	Per-Unitized Peak
June	5	0.8402	0.8941
June	6	0.8930	0.9358
June	7	0.9121	0.9562
July	8	0.9109	0.9164
July	9	0.9671	0.9703
July	10	1.0000	1.0000
July	11	0.9940	0.9915
August	12	0.9380	0.9919
August	13	0.9650	0.9688
August	14	0.8631	0.9114
August	15	0.8103	0.8908

LM #52809 (2002-2012) - PJM vs World Assessment

			PJM RTO LM #52809 11 Yr Load Model - 2002 - 2012	World Region LM #52897	
	Month	WK#	Per-Unitized Peak	Per-Unitized Peak	
	June	5	0.8419	0.8870	
	June	6	0.8930	0.9332	
	June	7	0.9121	0.9562	
	July	8	0.9290	0.9406	
	July	9	0.9415	0.9534	
	July	10	1.0000	1.0000	
	July	11	0.9677	0.9745	
	August	12	0.9650	0.9919	
	August	13	0.9045	0.9493	
	August	14	0.8502	0.8873	
	August	15	0.8043	0.8670	

- Both selected load models have PJM peaking on the same week as the World
- Load Model #52807: 2000-2010 has a better overall performance under both approaches

Historical Peak Load Coincidence PJM / World

	PJM Peak		World P	Peak	World P.U. Load Coincident		Hour Difference When Peak on	
Year	Date	Hour	Date	Hour	w/ PJM Peak	Same Day?	Same Day	
1998	21-Jul-98	17	21-Jul-98	17	100.0%	Yes	0	Average World P.U
1999	30-Jul-99	17	28-Jul-99	17	97.0%	No	-	Coincident w/ PJM
2000	9-Aug-00	17	31-Aug-00	17	98.7%	No	-	Median World P.U.
2001	9-Aug-01	16	8-Aug-01	16	98.2%	No	-	Coincident w/ PJM
2002	1-Aug-02	17	1-Aug-02	16	99.7%	Yes	1	
2003	21-Aug-03	17	14-Aug-03	16	98.2%	No	-	
2004	3-Aug-04	17	2-Aug-04	18	98.8%	No	-	Peak on Same Da
2005	26-Jul-05	16	25-Jul-05	17	99.7%	No	-	Peak Not on Same D
2006	2-Aug-06	17	1-Aug-06	16	99.5%	No	-	
2007	8-Aug-07	16	8-Aug-07	17	100.0%	Yes	1	Average Hour Delta W
2008	9-Jun-08	17	21-Jul-08	16	96.6%	No	-	Peak on Same Day
2009	10-Aug-09	16	10-Aug-09	16	100.0%	Yes	0	
2010	7-Jul-10	17	4-Aug-10	16	99.6%	No	-	
2011	21-Jul-11	17	20-Jul-11	16	99.6%	No	-	
2012	17-Jul-12	17	17-Jul-12	16	99.8%	Yes	1	
2013	18-Jul-13	17	18-Jul-13	16	99.6%	Yes	1	
2014	17-Jun-14	18	17-Jun-14	16	98.3%	Yes	2	
2015	28-Jul-15	17	28-Jul-15	16	99.6%	Yes	1	
2016	•	16	22-Jul-16	17	99.6%	No	-	
2017	19-Jul-17	18	20-Jul-17	17	96.9%	No	-	
2018	0	17	29-Jun-18	17	99.3%	No	-	
2019	19-Jul-19	18	19-Jul-19	17	99.4%	Yes	1	
2020	20-Jul-20	17	20-Jul-20	16	99.4%	Yes	1	

LM #52807 (2000-2010) - Switching of World peak week

		PJM RTO LM #52807 11 Yr Load Model - 2000 - 2010	World Region LM #52896
Month	wK#	Per-Unitized Peak	Per-Unitized Peak
July	8	0.9109	0.9164
July	9	0.9671	0.9703
July	10	1.0000	0.9915
July	11	0.9940	1.0000

- PJM recommendation to RAAS on selection of historical time period for load model:
 - Use 11yr (2000-2010, #52807) Load Model for 2022 RRS Base Case and switch World peak to a different July week so that PJM and World peak in the same month but not in the same week.
 - Switch in World peak week is performed to match historical diversity observed between PJM and World
- At August PC Meeting, PJM will request endorsement.

SME/Presenter:

Patricio Rocha Garrido Patricio.Rocha-Garrido@pjm.com

PJM Load Model Selection for 2022 Reserve Requirement Study (RRS) Member Hotline (610) 666 – 8980 (866) 400 – 8980 custsvc@pjm.com

