

DER Examples and Discussion Points

MIC DER Session August 18, 2017

1

Agenda

- Five simplified examples of market issues created by current rules.
- How Icetec's market proposal addresses these issues.
- Discussion on distribution studies.
- Request for input on visibility and telemetry.

Review Icetec Straw Proposal

At the last meeting we proposed DER rules where:

- Sites approved for injection under retail tariffs would only require minimal transmission study to be approved for wholesale participation.
- Interconnections requiring transmission upgrades would not fall under these rules.
- Registration and market participation follow DR model.
- DER and DR assets behind a retail meter generalaly treated as one integrated resource for PJM.

Example 1: Solar and Storage

- Summer peaking commercial site. Summer daytime load 3.0-5.0MW depending on weather, non-summer 3.0-3.5MW, nighttime load about 1.5MW lower.
- 2MW of solar and 2MW of storage behind the meter.
- Result is loss of regulation capability under many circumstances.

Conditions	Sup	Load	Solar Output	Net Load	Regulation Range
Conditions	Sull	LUau		Net Luau	Regulation Range
Warm	Average	3.5	1	2.5	0.5-4.5
Hot	Sunny	5	2	3	1.0-5.0
Mild	Nightime	1.5	0	1.5	-0.5-3.5
Mild	Sunny	3	2	1	-1.0-3.0

Example 2: BTMG

- Hospital with load 4.0 4.5MW summer, 3.0-3.5MW winter.
- 4MW of behind the meter generator. Generator can provide 500kW of regulation in range 3.5MW +/- 0.5MW.
- Result is that generator can only provide regulation when site would rather run to avoid higher energy prices.

Season	Load	Regulation Range	Opportunity Cost of Regulating
Summer	4.0	0.0-1.0	High
Winter	3.0	-1.0-0.0	Low

Example 3: BTMG and DR

- Campus with peak summer load 7.5MW, 3.0-3.5MW winter.
- 2MW BTMG, generally run in summer, reducing PLC to 5.5MW.
- Site can drop 1.5MW of HVAC load in summer.
- Result is site only qualifies for CP if gen and DR aggregated.

Season	Load	Generation Headroom	Available DR (Capacity)	Net Capacity
Summer Peak	7.5	0	1.5	1.5
Winter	3.5	2.0	0	2.0

Example 4: Cogen and DR

- Industrial with flat 4.0MW load.
- 4.0MW Cogen, base steam load produces 2.0MW.
- Cogen offers remaining 2.0MW based on fuel cost.
- Site can drop all load at high energy prices.
- Result is lower priced cogen prevents DR from participating.

Condition	Load	Generation Output	Available DR (Energy)	Lost DR Energy Opportunity
Routine	4.0	2.0	2.0	2.0
Cogen Struck	4.0	4.0	0	4.0

Example 5: Storage and DR

- Industrial with baseline load 1.5MW, offering 1MW DR as energy and capacity.
- 1MW battery providing regulation.
- Result is site can not meet regulation commitments when energy is struck or capacity DR called.

Situation	Load	Regulation Range
Normal	1.5	0.5 – 2.5
Energy Struck/Capacity Called	0.5	-0.5 - 1.5

• Potential future opportunity to use load to manage battery charge

Justification for Icetec Market Proposal

- All examples may frequently switch between net load and net injection.
- Examples 2, 3, 4 and potentially 5 benefit from treating DER and DR as single integrated resource.
- Underlying interests are:
 - 1. DERs not limited by underlying load.
 - 2. DERs and DR at the same site do not interfere with each other, but can complement.
 - 3. Whole settlements coexist with existing retail tariffs.
- "Negative load" solution proposed based on these interests. We are open to any alternative proposals.

Distribution Interconnection

- Icetec opposes requiring second distribution study for sites that are already injecting retail and wish to become wholesale.
- Main justification offered for second distribution study was possible impact of regulation service on distribution system.
 - What studies of regulation impact do EDCs actually do?
 - Why are protections on impacting power quality in existing retail tariffs insufficient?
 - How is the impact of a site providing service through DERs different from a site providing regulation through DR?
 - Can these studies be done at time of first distribution study?
- Icetec is also concerned that EDCs have no mandate to complete non-retail distribution studies in a timely manner.

Visibility and Telemetry

- We understand PJM and EDCs would like greater visibility into DER operations.
- Icetec is not positioned to propose these rules. Asking parties with interests in visibility to provide more details for possible inclusion in proposal.
- Issues of concern to Icetec:
 - Requirements should be applied fairly with no regard to ultimate purchaser of energy/AS/Capacity.
 - Cost

