

PJM Manual 19:

Load Forecasting and Analysis

Revision:25

Effective Date: June 1, 2014

Prepared by

Resource Adequacy Planning

Attachment D: Residential Non-Interval Metered Guidelines

Statistical sampling for residential customers:

Residential customers without interval metering may participate in the Synchronized Reserve, Capacity, and Energy markets using a statistical sample extrapolated to the population to determine compliance and energy settlements. The sample data must be from the same time interval as the event being settled.

Qualifications:

A registration may participate using statistical sampling to determine compliance and energy settlements under the following conditions, and subject to PJM approval:

- The registration consists entirely of residential customers.
- Locations can be sampled to accurately reflect the population load data.
- Curtailment at each location uses Direct Load Control Technology.
- Synchronized Reserve: Locations otherwise qualify for participation in the Synchronized Reserve Market. Locations do not have meters that record load data at a period of 1 minute or shorter.
- Economic Energy: Locations otherwise qualify for participation in the Economic Energy Markets. Locations do not have meters that record load data at a period of 1 hour or shorter.
- Load Management: Locations otherwise qualify for Load Management. Locations do not have meters that record load data at a period of 1 hour or shorter.

Sample Design:

Samples must be designed to achieve a maximum error of 10% at 90% confidence. The locations in the sample must be randomly selected from all the locations in the population group (a population group is a group of registrations that can share a sample based on the criteria listed below). The sample must be stratified by control device size (minimum of 2 strata) and geographic location, unless otherwise approved by PJM.

For Load Management registrations that participate in the energy market, a sample is required for each combination of EDC, CSP, end-use device (such as air conditioner or water heater) or device grouping, curtailment algorithm and switch vintage if there is substantial variation among installed switch capability.

For economic registrations that participate in the Energy Markets, a sample is required for each combination of dispatch group or registration, end-use device or device grouping, curtailment algorithm, and switch vintage if switch capability is substantially different.

For economic registrations that participate in the Synchronized Reserve market, a sample is required for each combination of SR subzone, dispatch group or registration, end-use device or device grouping, curtailment algorithm, and switch vintage if switch capability is substantially different.

Sample Size Determination:

A variance study is used to determine the initial sample size. Interval data must be collected from at least 75 randomly selected and stratified customers during the season the end use device is in use in order to determine the variance of the load data for the sample. Synchronized Reserves: At least 2 weeks of continuous meter data collected at a period of 1 minute or smaller.

Load Management and Economic Energy: At least 4 weeks of continuous meter data collected at a period of 1 hour or smaller.

The number of locations in the sample is then calculated as follows, unless otherwise approved by PJM:

 $n = \text{number of sampled customers in variance study,} \geq 75$

 $X_{i,t}$ = meter reading for customer i during interval t

Calculate the mean and variance of the meter data across all customers for each interval:

$$Mean(X_t) = \overline{X_t} = \frac{1}{n} \sum_{i=1}^{n} X_{i,t}$$

$$Var(X_t) = s_{X_t}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_{i,t} - \overline{X_t})^2$$

Calculate the sample size necessary to get 10% error at 90% confidence for each interval:

$$M_t = \left(\frac{Z\alpha_{/2}}{e}\right)^2 \frac{s_t^2}{\overline{X_t}^2}$$

Where

$$Z\alpha_{/2} = 1.645 = \text{critical value at 90\% confidence } (\alpha = 0.1)$$

$$e = 0.1 = error$$

Take the average sample size across all intervals to determine *M*, the sample size:

$$M = \frac{1}{T} \sum_{t=1}^{T} M_t$$

Where T is the total number of intervals. T should be at least 20,160 for SR (2 weeks of 1 minute intervals) and 672 for economic energy and Load management (4 weeks of hourly intervals).

Alternate calculations may be used subject to PJM approval.

Sample Recalibration:

The sample must be recalibrated annually as follows:

- 1. The sample size must be recalculated using the same method listed above using data from all locations in the sample.
- 2. If the population was expanded in a non-random manner, the sample must be expanded appropriately, so that the sample is representative of the population.
- 3. The number of locations in each stratum in the sample must be adjusted so that the number of locations in each stratum is proportional to the population in that stratum within +/- 1 location.

Data Validation and Estimation:

Data must be validated and estimated in accordance with the NAESB Validating, Editing, and Estimating (VEE) Protocol. This protocol should be used for validation and estimation of 1-minute data for the SR market as well as hourly data for capacity and energy markets. Note: All rules for hourly data shall apply to 1 minute data where the only difference is the use of 1 minute interval instead of 1 hour interval.

If 5 minutes or more are missing or faulty from 1 minute meter data for a single event, or 2 hours or more are missing or faulty from hourly meter data for a single event, data from that meter may not be used for that event. If there is 1 way switch communication, the data for that meter must be reported as the PLC level for every reported interval on the event day. If

there is 2 way switch communication and a sufficient number of locations in the sample without the missing meter data to meet the minimum sample size, then the an estimate for the missing meter data should not be reported for this event. If there is 2 way switch communication and an insufficient number of locations in the sample without the missing meter data to meet the minimum sample size, then the PLC value should be reported for every reported interval for the event day for each location with missing meter data such that there are enough locations to meet the sample requirements unless otherwise approved by PJM.

Example with one-way switch communication: The minimum required sample size is 300. There are 305 meters in the sample. 7 meters have missing or faulty data that cannot be corrected. The CSP must include data from the 298 correctly functioning meters, and report the data from the 7 faulty meters as the PLC value for each of the 7 EDC accounts for every reportable hour that day.

Example with two-way switch communication: The minimum required sample size is 300. There are 305 meters in the sample. 7 meters have missing or faulty data that cannot be corrected. The CSP must include data from the 298 correctly functioning meters, and report the data from 2 randomly selected faulty meters as the PLC value for those 2 EDC accounts for every reportable hour that day.

Switch Operability

Two-way switch communication: Two-way switch communication is when the CSP receives verification from the switch that it successfully cycled base on CSP instruction. When there is two way switch communication in place, the CSP will calculate the performance factor, *F*, as number of switches in the population that successfully cycled for that event divided by the total number of switches in the population that were sent the instruction to cycle for that event. The meter data will be multiplied by this value before submission to PJM to scale the sample average load data to the represent the population that performed the load reductions.

One-way switch communication: One-way switch communication is when the CSP cannot accurately determine if each switch in the population successfully cycled based on CSP instruction. In this case the operability value is implicit in the sample. The CSP must report all data from all meters in the sample, even if a switch in the sample is faulty. The CSP may not repair any faulty devices in the sample that could also be faulty in the population (for example an air conditioner cycling switch cannot be repaired/replaced but a 1-minute meter could be repaired/replaced) unless the CSP repairs/replaces those same devices that are faulty in the population. Switch failure in the sample must be reported to PJM within 2 business days.

Converting sample data to meter data

Note that the sample data must be from the same time interval being settled.

 $X_{i,t}$ is the meter reading for customer i during interval t after VEE protocol is applied per this Manual.

B is the

= set of EDC accounts in sample that are to be included in estimation (after subject to rules in this manual)

 M_s = Sample size (number of EDC accounts in B)

 $M_c = Population \ of \ Cycled \ customers$

F is the opearbility factor, calculated subject to this manual (1 for one way switch communication)

The meter data value to be submitted to PJM for interval t is Y_t :

$$Y_t = F \frac{M_c}{M_s} \sum_{i \in R} X_{i,t}$$

Measurement and Verification Plan

The CSP must submit a Measurement and Verification (M&V) plan to PJM before the registration is submitted. The M&V plan must be approved by PJM before the registration is submitted. CSP is to resubmit an updated M&V plan annually to continue participation in the PJM markets.

The M&V plan must include details on: how the variance study was conducted and sample size was determined; sample selection and stratification; meter qualification and quality assurance; data validation and error correction protocol; and how sample meter data will be converted to population meter data. A template of the M&V plan is to be published on pjm.com.

Churn and Customer Documentation

Note: Parts of this section apply to interval metered residential customers, as indicated below.

Applicable to all residential customer registrations (interval metered and non-interval metered):

 CSP to submit initial list of customers to PJM at time of registration, including all EDC account numbers, <u>PLCs and zip codes and service addresses</u>. <u>Where legal or regulatory conditions prohibit provision of EDC account number as personally identifiable customer information the EDC may use unique identifying numbers for
</u>

EDC account numbers, through 5/31/16 or as otherwise approved by PJM. -EDC is responsible to maintain list of EDC account numbers and associated unique identifying numbers when used. EDC may need to check for duplicate as approved by PJM.

- Replacement allowed for customer who moves from their premises or customer terminates contract with CSP.
- CSP must maintain list of all replacement and furnish to PJM within 2 business days of request.
- CSP must maintain list of customers who were cycled during an event.
- All customer lists, meter data, and documentation must be furnished to PJM within 2 business days of request and be maintained by CSP for 2 years.

Applicable to interval-metered Load Management:

- CSP to submit list of PLC values for each EDC account at time of registration.
- Replacement customers must be selected to maintain PLC and load drop.
- CSP must maintain list of customers for each event and maintain for 2 years from event date.
- CSP may not add/remove customers (other than replacement). If number of customers falls below registered number, CSP must report to PJM within 2 business days and is subject to RPM Resource Deficiency Charges if applicable.

Applicable to non-interval metered Load Management:

- CSP to submit list of PLC values for each EDC account at time of registration.
- Replacement customers must be randomly selected to maintain integrity of strata, and if applicable PLC and load drop.
- CSP must maintain list of customers for each event and maintain for 2 years from event date.
- CSP may not add/remove customers (other than replacement). If the number of customers falls below registered number, CSP must report to PJM within 2 business days and is subject to RPM Resource Deficiency Charges if applicable.

Applicable to interval metered Economic Energy and Synchronized Reserve:

• There are no restrictions on replacement customers since actual meter data is submitted.

- CSP must maintain list of customers for each offer for 2 years from date of offer.
- CSP may add/remove customers at any time, but must maintain documentation and update the value on the location in eLRS. This value must be accurate every day an offer is submitted.
- List of offered customers must be finalized at time of offer. Number of offered customers cannot exceed number of customers on location.

Applicable to non-interval metered Economic Energy and Synchronized Reserve:

- Replacement customers must be randomly selected to maintain the integrity of the strata.
- CSP must maintain list of customers for each offer for 2 years from date of offer.
- CSP may add/remove customers at any time, if it can be done such that the sample remains representative of the population. CSP must maintain documentation and update the value on the location in eLRS. This value must be accurate every day an offer is submitted.
- If CSP offers partial list of customers to market, then such customers must be randomly assigned from pool of all registered customers. List of offered customers must be finalized at time of offer. Number of offered customers cannot exceed number of customers on location.