

PJM Reliability Pricing Model:

Analysis in Support of The Appropriate Reference Unit

Presented to PJM

On behalf of the P3 Group

11 February 2022

Contents

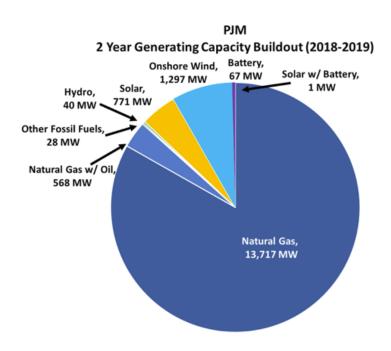
Objective:

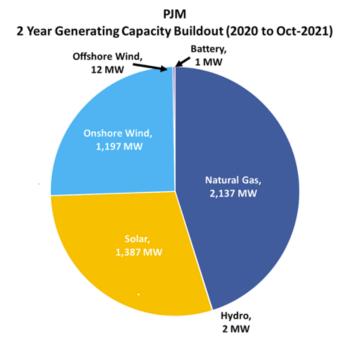
Provide an overview of the research and report regarding the appropriate reference unit and considerations for adjustments to the VRR Curve for the Reliability Pricing Model ("RPM") Quadrennial Review

Report Overview:

- Generation Mix: State policies and new technologies should inform PJM's reference unit now and going forward
- Cost and Uncertainty: The estimated costs and Net CONE for a combined cycle is more uncertain than for a combustion turbine
- VRR Curve: Should not be steepened given uncertainty and lack of foundation
- Conclusion: The combustion turbine, for now, reflects a pure capacity unit and sends the right signal

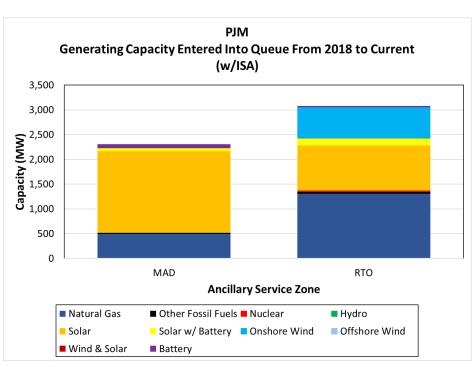
Analysis in Support of the Appropriate Reference Unit

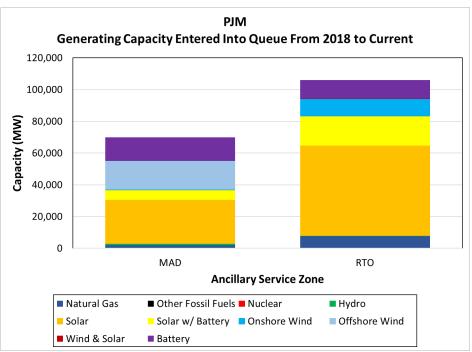

GENERATION MIX


Recent buildout in PJM indicates a shift toward clean energy

3 Year Existing Generating Capacity Buildout (2018 to Current)

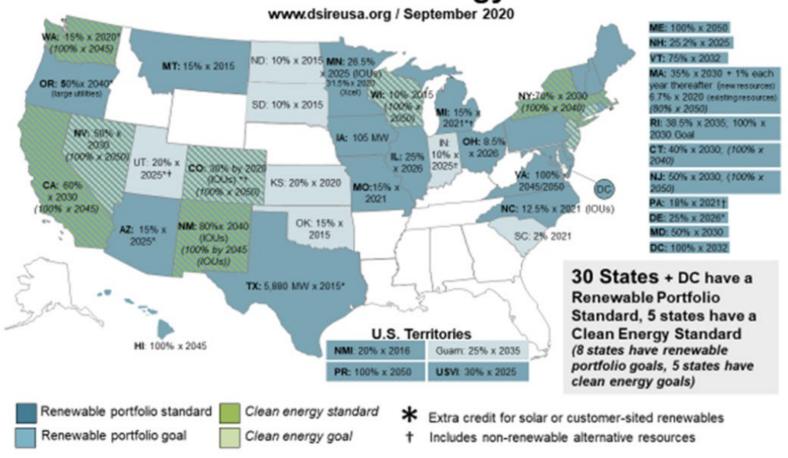
1 Year Existing Generating Capacity Buildout (2020 to Current)


Source: Energyzt analysis of PJM Queue data.



PJM has a queue that is filled with solar and wind

Generating Capacity in Queue with and without an ISA (2018 to Current Entry Year)



Nearly all PJM states have some level of clean energy goals

Renewable & Clean Energy Standards

Illinois, New Jersey and Virginia have announced 100% renewable goals

Although the state requirements vary, some have near-term targets

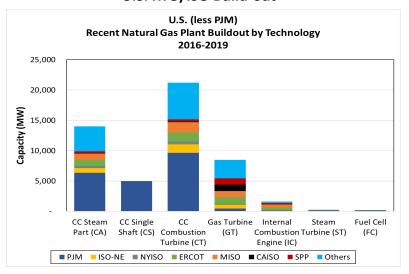
PJM States Summary of Renewable and Carbon Emission Reduction Goals

State	RPS Targets	Economy-wide Carbon Emissions Targets ⁷
Delaware	40% by 2026	30% below 2008 levels by 2030
Illinois	45% by 2026, 100% by 2050	26-28% below 2005 levels by 2025
Indiana	10% by 2025	-
Kentucky	-	-
Maryland	50% by 2030, 100% by 2040	50% below 2006 levels by 2030, carbon neutral by 2050
Michigan	15% by 2021	28% reduction by 2025, carbon neutral by 2050
North Carolina	12.5% by 2021	70% below 2005 levels by 2030, carbon neutral by 2050 (power sector specific)
New Jersey	50% by 2030, 100% by 2050	80% below 2006 levels by 2050
Ohio	8.5% by 2026	-
Pennsylvania	18% by 2021	26% below 2005 levels by 2025, 80% by 2050
Tennessee	-	-
Virginia	100% by 2045 (Dominion) 100% by 2050 (AEP)	Net zero by 2045
Washington, DC	100% by 2032	50% below 2006 levels by 2032, 80% by 2050
West Virginia	-	-

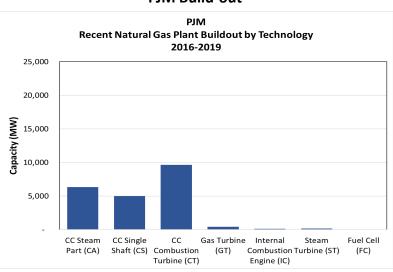
Long-term targets also will impact resource choice, siting and retirements

Mandates are not needed to prevent fossil generation build-out

Illinois: On September 15, 2021, Illinois Governor J. B. Pritzker signed the Climate and Equitable Jobs Act into law which, among other things, requires all private coal-fired and oil-fired electric generating units to reach zero emissions by January 1, 2030. All privately-owned natural gas-fired units must reach zero emissions by 2045, subject to several interim targets that are designed to force closures prior to those dates.


New Jersey: On November 15, 2021, the New Jersey Senate passed Senate Resolution 17 which urges the Governor to impose an immediate moratorium on fossil fuel project until, ". . . the State adopts rules regulating CO2 and other climate pollutants adequate to achieve the 80 percent reduction in greenhouse gas emissions from 2006 levels by 2050 as required under the Global Warming Response Act."

Virginia: On April 11, 2020, Virginia Governor Ralph Northam signed the Virginia Clean Economy Act into law which, among other things, creates a "schedule by which Dominion Energy Virginia and American Electric Power are required to retire electric generating units located in the Commonwealth that emit carbon as a by-product of combusting fuel to generate electricity." Specifically, by December 31, 2045, all electric generating units located in Virginia that "emit carbon as a by-product of combusting fuel to generate electricity" would be required to retire . . .



PJM's has a much more limited set of new entry technologies

U.S. RTO/ISO Build-out

PJM Build-out

Natural Gas Recent Buildout 2016-2019

			CC Combustion		Internal Combustion			
Location	CC Steam Part (CA)	CC Single Shaft (CS)	Turbine (CT)	Gas Turbine (GT)	Engine (IC)	Steam Turbine (ST)	Fuel Cell (FC)	Total
PJM	6,347	4,988	9,630	439	127	161	10	21,701
ISO-NE	801	-	1,418	644	5	-	23	2,890
NYISO	300	-	470	140	-	-	8	917
ERCOT	1,020	-	1,442	1,069	502	-	-	4,032
MISO	1,056	-	1,742	1,028	478	33	-	4,336
CAISO	16	-	71	1,109	7	-	85	1,288
SPP	350	-	369	993	265	=	=	1,976
Others	4,123	-	6,053	3,072	212	1	3	13,464
Total	14,012	4,988	21,195	8,492	1,594	195	128	50,604
% of Total (PJM)	29%	23%	44%	2%	1%	1%	0%	100%
% of Total (Less PJM)	27%	0%	40%	28%	5%	0%	0%	100%
PJM % of Total for Technology	45%	100%	45%	5%	8%	83%	8%	43%

Other markets have reciprocating engines and aeros to integrate renewables

PJM's RPM parameters create barriers to entry for new technologies

July 21, 2021

- CONE construct does not reflect market realities
- System does not distinguish or monetize valuable capacity characteristics
- Financing is difficult to obtain for anything other than CCs and CTs
- New technologies are locked out

July 26, 2021

- Aeros are being built in areas with highly integrated renewables
- PJM market is challenging to enter
- Complex energy and capacity market variability make it difficult to obtain financing
- Market niche has been utilities, COOPs, munis

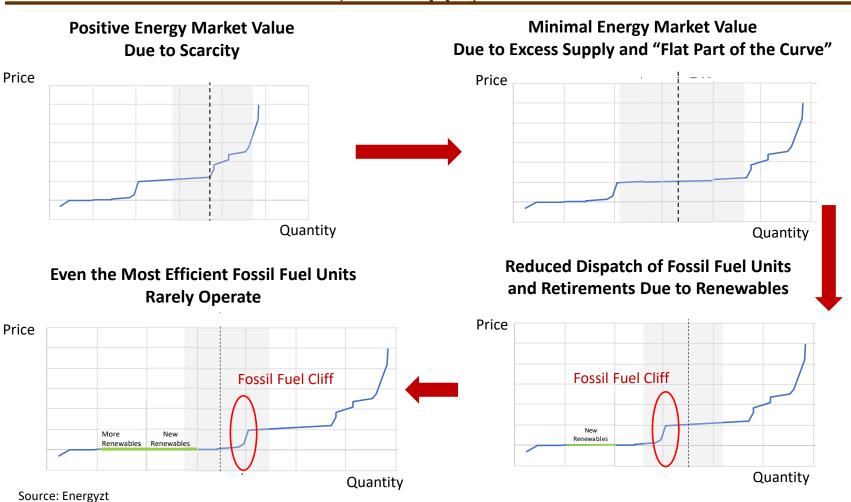
PJM's market structure and market conditions challenge new entry

The reference unit should reflect each state's policy requirements

- A Reference Unit should be a technology that can be developed in a region
- In areas with environmental goals, reference units should reflect those goals:
 - For example, Illinois, New Jersey and Virginia 100% Renewable Portfolio Standards make it difficult to site new fossil fuel units in those state
 - States with less restrictive near-term targets that have not yet been met also would argue for a renewable hybrid as the Reference Unit
- Renewable resource reference units also should include storage capability to meet consistent reliability standards with alternatives
- A potential exception could be reliability units that support increasing integration of renewable resources (e.g., ramping, fast-start capability)
 - Such interim resources would need to reflect reliability needs with implementation of environmental goals
 - Any fossil fuel reliability units would need to be retired in a timeframe consistent with policy goals (e.g., by 2045 for Virginia)
- Fossil fuel units in the region should be compensated using parameters based on the net CONE of the unit that would be built if an existing unit retired

Analysis in Support of the Appropriate Reference Unit

COST AND ESTIMATION UNCERTAINTY



The reference unit should reflect the changing generation mix

- There is no doubt that PJM and the rest of the Eastern Interconnect will experience a significant change in generation mix over the next 10 years
 - New England, New York and states within PJM are procuring renewable resources
 - PJM states have significant renewable resource goals to be achieved by 2045
- As renewables come online, the energy supply curve shifts
 - Lower energy prices
 - Changes in price volatility tied to supply curve impacts and intermittent generation
- Natural gas-fired generation will have lower capacity factors as they are displaced by renewables
 - Lower dispatch
 - Lower demand for natural gas
- Natural gas prices will become more volatile
 - Impacts Henry Hub prices
 - Impacts basis differentials

As renewables come online, the supply curve shifts

Renewable integration creates a significant amount of market uncertainty

The combined cycle Net CONE has greater uncertainty

Reasons Why the Combined Cycle Creates More Risk

Gross CONE

- Wider variation across estimates
- Impacted by assumed location
- Higher capital costs more likely to be impacted by inflation and supply chain challenges
- Brattle chose the low end of the range

E&AS

- Higher portion of revenues come from E&AS
- Market conditions have a greater impact on E&AS and associated Net CONE
- Highly uncertain market evolution translates into higher uncertainty in E&AS estimation and therefore Net CONE

Operations

- Greater variability in operating costs
- Less able to support renewable integration compared to other technologies
- Dispatch dependent on spark spread, which can swing capacity factors across a wide range

Both NYISO and ISO-NE use combustion turbines as reference units

NYISO Net CONE Capital Cost Estimates (\$2020/kW)

	C - Central	F - Capital	G - Dutchess	G - Rockland	J - NYC	K - Long Island			
Simple Cycle Peaking Plant Technologies									
3x0 Siemens SGT-A65	\$1,928	\$1,945	\$2,099	\$2,161	\$2,680	\$2,211			
1x0 GE 7F.05 (with Dual Fuel and SCR)	\$1,315	\$1,324	\$1,342	\$1,403	\$1,817	\$1,488			
1x0 GE 7F.05 (Gas Only, without SCR)	\$1,072	\$1,082	-	-	-	-			
1x0 GE 7HA02 (with Dual Fuel and SCR)	\$1,050	\$1,054	\$1,065	\$1,100	\$1,353	\$1,170			
1x0 GE 7HA.02 (Gas Only, without SCR)	\$831	\$837	-	-	-	-			
Informational Combined Cycle Plants									
1x1 GE 7HA.02 (with SCR)	\$1,401	\$1,421	\$1,547	\$1,649	\$1,961	\$1,832			
Energy Storage									
BESS 4-hour	\$1,539	\$1,552	\$1,565	\$1,620	\$1,910	\$1,649			
BESS 6-hour	\$2,146	\$2,166	\$2,184	\$2,263	\$2,592	\$2,326			
BESS 8-hour	\$2,753	\$2,778	\$2,802	\$2,906	\$3,273	\$3,004			

Note:

Source: Analysis Group and Burns & McDonnell, "Independent Consultant Study to Establish New York ICAP Demand Curve Parameters for the 2021/2022 through 2024/2025 Capability Years – Interim Final Draft Report," August 5, 2020, Table 24, p. 47, 214567fb-b960-233f-bcda-4b919678bce4 (nyiso.com)

^[1] Estimates for the Siemens SGT-A65 and informational 1x1 GE 7HA.02 combined cycle units are specified with dual fuel in Load Zone G (Dutchess County), Load Zone G (Rockland County), NYC, and LI, and are specified as a gas-only design in Load Zone C and Load Zone F.

^[2] All estimates include construction financing costs.

PJM's estimates illustrate the CC's sensitivity to market conditions

efault Zonal Net	CONE								
II quantities are in \$/	MW-Day (Name	eplate) and Def	ault Net CONE i	s in \$/ICAP-MW-Day					
	Combustion Tu	ırbine			Combined Cy	rcle			
		Gross CONE	\$294		Gross CONE \$320				
N	et Reactive Service	e Revenue Offset	\$6.02		Net Reactive Service Revenue Offset				
Capacity Value (% Nameplate MW)			NA		Capacity Value (% Nameplate MW)				
Zone	Net E&AS* Revenue Offset	Net CONE	Default Net CONE (\$/ICAP MW-Day)	Zone	Net E&AS* Revenue Offset	Net CONE	Default Net CONE (\$/ICAP MW-Day)		
AECO	\$36.72	\$251	\$251	AECO	\$142.70	\$168	\$168		
AEP	\$66.47	\$222	\$222	AEP	\$214.72	\$96	\$96		
APS	\$86.40	\$202	\$202	APS	\$241.90	\$69	\$69		
ATSI	\$72.95	\$215	\$215	ATSI	\$219.98	\$91	\$91		
BGE	\$78.23	\$210	\$210	BGE	\$237.39	\$73	\$73		
COMED	\$48.17	\$240	\$240	COMED	\$170.74	\$140	\$140		
DAYTON	\$71.04	\$217	\$217	DAYTON	\$221.05	\$90	\$90		
DEOK	\$77.93	\$210	\$210	DEOK	\$217.30	\$94	\$94		
DOM	\$55.57	\$232	\$232	DOM	\$184.01	\$127	\$127		
DPL	\$67.10	\$221	\$221	DPL	\$199.12	\$112	\$112		
DUQ	\$71.15	\$217	\$217	DUQ	\$212.69	\$98	\$98		
EKPC	\$71.00	\$217	\$217	EKPC	\$222.55	\$88	\$88		
JCPL	\$36.44	\$252	\$252	JCPL	\$142.05	\$169	\$169		
METED	\$58.75	\$229	\$229	METED	\$194.20	\$117	\$117		
PECO	\$43.96	\$244	\$244	PECO	\$165.61	\$145	\$145		
PENELEC	\$118.00	\$170	\$170	PENELEC	\$270.68	\$40	\$40		
PEPCO	\$53.17	\$235	\$235	PEPCO	\$193.41	\$117	\$117		
PPL	\$45.01	\$243	\$243	PPL	\$165.97	\$145	\$145		
PSEG	\$35.07	\$253	\$253	PSEG	\$140.55	\$170	\$170		
RECO	\$38.53	\$249	\$249	RECO	\$144.76	\$166	\$166		
Average	\$62	\$226	\$226	Average	\$195	\$116	\$116		
Std Dev	\$20	\$20	\$20	Std Dev	\$36	\$36	\$36		
Std Dev / Average	33%	9%	9%	Std Dev / Average	19%	31%	31%		

Net E&AS Revenue Offset value in tables above does not include reactive services. Reactive services constant is added to Net E&AS to determine Net CONE.

- PJM's Net CONE estimates by zone illustrate impact of market conditions
- Gross CONE is the same across zones, isolating variability to E&AS estimate
- CC has higher absolute value of variability
- Coefficient of Variation

 (i.e., ratio of standard
 deviation to average) is
 higher for the CC Net CONE
- E&AS offset has a smaller impact on the CT Net CONE because it is a relatively smaller than Gross CONE

Based on the Net CONE calculations presented by PJM on August 2020, 20200814-net-cone-values-and-indicative-eas-offset-workbook-supplemental.xls

Ancillary services is another area that tends to be overestimated

Percentage of Ancillary Services Provided by Unit/Fuel Type in 2020

	Tier 2 Synd Rese			hronized erve	Scheduled DASR	
Generation Technology	% <u>by</u> MW	% <u>by</u> Credits	% <u>by</u> MW	% <u>by</u> Credit	% <u>by</u> MW	% <u>by</u> Credit
CT – Natural Gas	37.0%	42.1%	50.6%	58.9%	61.7%	51.7%
CT – Oil	12.3%	16.7%	34.6%	31.1%	18.9%	18.2%
DSR	27.8%	11.2%	0.0%	0.0%	0.0%	0.0%
Combined Cycle	11.7%	21.3%	0.0%	0.0%	2.8%	13.0%
Hydro-Run of River	6.4%	3.2%	14.6%	9.9%	0.0%	0.0%
Hydro – Pumped Storage	0.7%	0.6%	0.1%	0.1%	10.3%	3.6%
CT – Other	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Steam - Coal	3.6%	4.2%	0.0%	0.0%	5.6%	9.0%
RICE – Natural Gas/Other	0.4%	0.4%	0.0%	0.0%	0.4%	1.4%
Steam – Natural Gas	0.1%	0.3%	0.0%	0.0%	0.3%	1.0%
Battery	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Fuel Cell	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Nuclear	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Solar	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Wind	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%

Source: Market Monitor Reports

State goals and mandates can and will result in early retirements

Factors Impacting Reference Unit Lifespan

Technical

- Technical life depends on operations and degradation rates
- Combined Cycles are more expensive to operate than Combustion Turbines
- Batteries are particularly sensitive to number of charge/discharge cycles
- Changes in volatility could adversely impact maintenance costs and technical viability

Economic

- Transition to higher renewable integration suppresses natural gas and energy prices
- New renewables could adversely impact scarcity pricing and volatility
- Batteries will suppress volatility, challenging their arbitrage opportunities
- Fossil fuel units may have to retire early

Policy

- Federal and state policies impact build-out and follow-on impacts
- States with Net-Zero goals and 100% RPS requirements may mandate retirement or prevent fossil fuel units from remaining online
- Project lifespans should not extend beyond policy directives/mandates

Key questions to consider in the life extension assumption

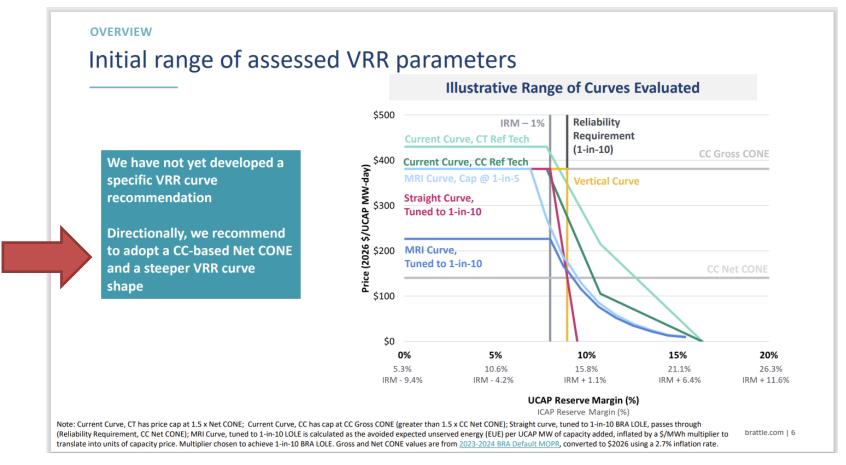
- Is it realistic to assume a plant can operate 30 years without:
 - Significant capital investment
 - Major upgrades and maintenance to extend life
 - Refinancing with associated financing costs
- Are there other factors that need to be considered:
 - Technical constraints tied to physical limitations
 - Economic uncertainty tied to market transformation
 - Policy trends
- How does this correspond to state policies that would limit
 - Repowering
 - Permits
 - Emissions
 - Continued operations

The energy offset is uncertain and should not dictate parameters

As noted by the U.S. Court of Appeals:

"Combined cycle plants are more reliant on energy market revenues to justify construction. Those energy market revenues—included in the EAS Revenue Estimate— are often considered more difficult to estimate than the construction costs that also factor into the net CONE. Accordingly, any misestimation of energy market revenues has a larger impact on the accuracy of a combined cycle plant's net CONE than on a combustion turbine plant's."

United States Court of Appeals FOR THE DISTRICT OF COLUMBIA CIRCUIT, Argued April 6, 2021, Decided July 9, 2021, No. 20-1212 DELAWARE DIVISION OF THE PUBLIC ADVOCATE, ET Al., PETITIONERS v. FEDERAL ENERGY REGULATORY COMMISSION, RESPONDENT PJM INTERCONNECTION, L.L.C., INTERVENOR On Petition for Review of Orders of the Federal Energy Regulatory Commission, p. 10.


Analysis in Support of the Appropriate Reference Unit

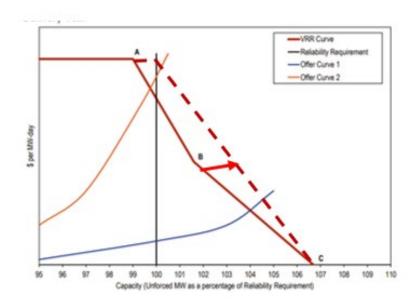
VRR CURVE

VRR Curve

Brattle is looking to steepen the VRR Curve

Source: The Brattle Group, Fifth Review of the Variable Resource Requirement Curve Presented by Samuel Newell Michael Hagerty Travis Carless, Preliminary Assessment of the VRR Curve Shape Presented to PJM Market Implementation Committee, December 8, 2021, p. 6.

VRR Curve


Uncertainty would justify extending the curve out to the right

PJM Alternative Ways to Steepen the VRR Curve

Alternative 1

WRR Curve — Reliability Requirement — Offer Curve 1 — Offer Curve 2 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 Capacity (Unforced MAY as a percentage of Reliability Requirement)

Alternative 2

VRR Curve

The Reference Unit does not need to have the lowest Net CONE

As the U.S. Court of Appeals:

"The Commission reasonably determined that an oversupplying combustion turbine plant-based VRR Curve, at a modest cost increase, was compatible with consumer interests because it ensured reliability more consistently than a combined cycle plant-based VRR Curve."

United States Court of Appeals FOR THE DISTRICT OF COLUMBIA CIRCUIT, Argued April 6, 2021, Decided July 9, 2021, No. 20-1212 DELAWARE DIVISION OF THE PUBLIC ADVOCATE, ET Al., PETITIONERS v. FEDERAL ENERGY REGULATORY COMMISSION, RESPONDENT PJM INTERCONNECTION, L.L.C., INTERVENOR On Petition for Review of Orders of the Federal Energy Regulatory Commission, p. 12, Footnote 6.

Analysis in Support of the Appropriate Reference Unit

CONCLUSION

Conclusion

A lower Net CONE does not ensure reliability

- Choosing the resource solely based on the "lowest" estimated Net CONE is not prudent
 - Focuses on cost as the only characteristic versus operational capability
 - Gives undue emphasis to estimated and uncertain E&AS offsets
 - Could create needless barriers to entry for other technologies
- FERC and the U.S. Court of Appeals found a number of reasons why a higher cost combustion turbine can be the Reference Unit:
 - Combustion Turbine is reflective of resource adequacy and reliability
 - Less costly up-front capital
 - Quicker to market
 - Rapidly meets changes in demand
 - Satisfies the Reliability Requirement
 - Combined cycle was more uncertain
 - More dependent on estimated E&AS offsets
 - Negative impacts from shifting plant from year to year

Conclusion

Why add another change to the market?

- Markets already are facing significant uncertainty
 - Policy pressures to change the generation mix
 - Transformation to a decarbonized grid
 - Implementation of new technologies
 - Volatile natural gas prices
- RPM market rules are changing dramatically
 - Elimination of the MOPR
 - _ ELCC
 - MSOC Uncertainty
 - 10% adder removed for the first time in PJM history
 - EAS based on backward-looking (6/2022) or forward-looking (12/2022)?
- Higher levels of estimation errors
 - Gross CONE estimates
 - E&AS Estimates
 - Inflation
- Any justification and support for changing the VRR Curve should be forwardlooking and account for uncertainty, and not try to correct for historical results