

# Illustrative Examples of Reactive Capability (D-Curves) and Corresponding Compensation under Packages G and E

Darrell Frogg
Generation Department
Reactive Power Compensation Task Force
October 20, 2022

www.pjm.com | Public PJM©2022



### Summary of Package E Compensation Metric



Flat rate: a generator's revenue is MVAR\_Capability\*Rate

For illustration, assume Rate is \$1,000/MVAR-yr (hypothetically).

A generator's **D-curve** shows the maximum reactive capability (both injecting & withdrawing VARs, or "Q") as a function of real power (i.e., MW or "P") output.

In general, machine designs mean more MW output means less MVAR capability.

MVAR\_Capability\_E is [average of Q1 and Q2] minus [average of Q3 and Q4]. This basically amounts to: injecting capability (averaged at Pmax and Pmin) plus withdrawing capability (averaged at Pmax and Pmin).

- VAR withdrawal is negative Q, hence the "minus".
- Pmin is the lowest power the generator is capable of making while online (not less than zero).
- Pmax is Maximum Facility Output or the functional equivalent.





## Summary of Package G Compensation Metric



Flat rate: a generator's revenue is MVAR\_Capability\*Rate

• For illustration, assume Rate is \$1,000/MVAR-yr (hypothetically).

Package G would use precisely the same reactive rate as Package, without adjustment.

MVAR\_Capability\_G is [average of Q1-Q1<sub>o</sub> and Q2-Q2<sub>o</sub>] minus [average of Q3-Q3<sub>o</sub> and Q4-Q4<sub>o</sub>].

 $Q_o$  is the "standard obligation" = 0.95 lead/lag power factor at high side. This amounts to:

injecting capability above obligation (averaged at Pmax and Pmin) --plus-withdrawing capability above obligation (averaged at Pmax

and Pmin).
VAR withdrawal is negative Q, hence the "minus".





## Package G-PJM-Capability Above Standard Obligation







- Same as Package E during transition period.
- After transition period, same as Package E, except compensates only capability above standard obligation (i.e., above 0.95 lead/lag power factor).
- Transition period is:
  - Option I: 5 years
  - Option II: after 90% of existing Schedule
     2 filed rates have rolled off (e.g., only 29 or fewer remain)



## Calculating Standard Obligated Capability For Package G

- P is real power, Q is reactive power, S is "apparent power"
- Obligation is 0.95 Power Factor
- Power factor is defined as  $P/S = 0.95 \rightarrow S = P/0.95$
- Power systems engineering says:  $S^2 = P^2 + Q^2 \rightarrow Q = \sqrt{S^2 P^2} \rightarrow$

• 
$$Q = \sqrt{\left(\frac{P}{0.95}\right)^2 - P^2} = \left(\sqrt{\left(\frac{1}{0.95}\right)^2 - 1}\right) \times P = \Rightarrow$$

## Obligation: Q is 32.87% of P

Example: obligated reactive capability at 100 MW is 32.87 MVAR (leading and lagging)

www.pjm.com | Public 5



## Comparative Summary of Compensation Examples (Details for Each Example on Following Slides)

|                          | Package E | Package G |  |
|--------------------------|-----------|-----------|--|
| Steam                    | \$81,500  | \$32,500  |  |
| CT                       | \$76,500  | \$17,500  |  |
| CT w/ Condensing Mode    | \$81,500  | \$48,500  |  |
| Solar                    | \$78,000  | \$45,000  |  |
| Solar w/ Condensing Mode | \$78,000  | \$45,000  |  |
| Battery                  | \$133,000 | \$100,000 |  |
| DC-Coupled Hybrid        | \$78,000  | \$45,000  |  |
| New Tech Wind            | \$78,000  | \$45,000  |  |
| Old Tech Wind            | \$66,000  | \$33,000  |  |
| Old Tech Wind Fixed PF   | \$33,000  | \$0       |  |



## Package G ("Pay Capability in Excess of Standard Obligation") Examples

www.pjm.com | Public PJM©2022



## Illustrative Example of a 100 MW Steam Generator



#### VAR injection capability:

| • | <b>Q1</b> @Pmax | (100 MW) | ) = 40 MVAR |
|---|-----------------|----------|-------------|
|---|-----------------|----------|-------------|

Difference: 7 MVAR

• 
$$Q1_o$$
@Pmax (100 MW) = 33 MVAR

Q2@Pmin (50 MW) = 50 MVAR

Difference:

• 
$$Q2_0$$
@Pmin (50 MW) = 16 MVAR

34 MVAR

#### VAR withdrawal capability:

Q3 at Pmax = -33 MVAR

Difference: 0 **MVAR** 

 $Q3_0$ @Pmax = -33 MVAR

Difference:

Q4 at Pmin = -40 MVAR

-24 MVAR

- $Q4_0$ @Pmin = -16 MVAR
- Average(7,34) Average(0,-24) = 32.5
- Compensation = \$1,000\*32.5 =\$32,500/yr





## Illustrative Example of a 100 MW Combustion Turbine



#### VAR injection capability:

| • | Q1@Pmax (100 MW) = 40 MVAR | Difference: |
|---|----------------------------|-------------|
|---|----------------------------|-------------|

R 7 MVAR

• 
$$Q1_o$$
@Pmax (100 MW) = 33 MVAR

Q2@Pmin (80 MW) = 45 MVAR

Difference:

• 
$$Q2_0$$
@Pmin (80 MW) = 26 MVAR

**19** *MVAR* 

#### VAR withdrawal capability:

| • | Q3 | at | <b>Pmax</b> | = | -33 | $M \setminus$ | /Al | R |
|---|----|----|-------------|---|-----|---------------|-----|---|
|---|----|----|-------------|---|-----|---------------|-----|---|

Difference:

•  $Q3_0$ @Pmax = -33 MVAR

0 MVAR

• Q4 at Pmin = -35 MVAR

Difference:

•  $Q4_0$ @Pmin = -26 MVAR

-9 MVAR

- Average(7,19) Average(0,-9) = 17.5
- Compensation = \$1,000\*17.5 = \$17,500/yr





## Illustrative Example of a Combustion Turbine



#### VAR injection capability:

• Q1@Pmax (100 MW) = 40 MVAR Difference:

/AR

•  $Q1_0$ @Pmax (100 MW) = 33 MVAR

Q2@Pmin(0 MW) = 50 MVAR

Difference:

•  $Q2_0$ @Pmin (0 MW) = 0 MVAR

50 MVAR

7 MVAR

#### VAR withdrawal capability:

• Q3 at Pmax = -33 MVAR

Difference:

•  $Q3_0$ @Pmax = -33 MVAR

0 MVAR

Q4 at Pmin = -40 MVAR

Difference:

•  $Q4_0$ @Pmin = 0 MVAR

-**40** MVAR

- Average(7,50) Average(0,-40) = 48.5
- Compensation = \$1,000\*48.5 = \$48,500/yr





## Illustrative Example of a Solar Plant



(Same as New Tech Wind and DC-Coupled Hybrid)

#### VAR injection capability:

• Q1@Pmax (100 MW) = 33 MVAR Difference:

•  $Q1_o$ @Pmax (100 MW) = 33 MVAR

• Q2@Pmin (0 MW) = 45 MVAR

•  $Q2_0$ @Pmin (0 MW) = 0 MVAR

0 MVAR

Difference:

45 MVAR

#### VAR withdrawal capability:

• Q3 at Pmax = -33 MVAR Difference:

•  $Q3_o$ @Pmax = -33 MVAR

• Q4 at Pmin = -45 MVAR

•  $Q4_o$ @Pmin = 0 MVAR

Difference:

**-45** MVAR

- Average(0,45) Average(0,-45) = 45
- Compensation = \$1,000\*45 = \$45,000/yr





## Illustrative Example of a Battery (5)



#### VAR injection capability:

Q1@Pmax (100 MW) = 33 MVAR

Difference: 0 MVAR

 $Q1_{0}$ @Pmax (100 MW) = 33 MVAR

Difference:

Q2@Pmin (0 MW) = 100 MVAR

100

 $Q2_0$ @Pmin (0 MW) = 0 MVAR

**MVAR** 

#### VAR withdrawal capability:

Q3 at Pmax = -33 MVAR

Difference:

 $Q3_0$ @Pmax = -33 MVAR

0 MVAR

Q4 at Pmin = -100 MVAR

Difference:

 $Q4_0$ @Pmin = 0 MVAR

-100 MVAR

- Average(0,100) Average(0,-100) = 100
- Compensation = \$1,000\*100 = \$100,000/yr

## **D-Curve ↑**Q2 Charging output **√Q4**



## Illustrative Example of Old-Technology Wind Plants



- Old tech with full capability fixed at +/-33
   MVAR regardless of power:
  - 0 excess at Pmax, 33 MVAR excess lead and lag at Pmin → \$33,000



- Old tech with controller set to only provide 0.95 lead/lag capability:
  - 0 excess capability above obligation → \$0





## Package E ("Pay Full Capability") Examples (Same As Prior Meeting)

www.pjm.com | Public PJM©2022



## Illustrative Example of a 100 MW Steam Generator



- VAR injection capability:
  - Q1 at Pmax (100 MW) = 40 MVAR
  - Q2 at Pmin (50 MW) = 50 MVAR
- VAR withdrawal capability:
  - Q3 at Pmax = -33 MVAR
  - Q4 at Pmin = -40 MVAR
- Average(40,50) Average(-33,-40) = 81.5
- Compensation = \$1,000\*81.5 = **\$81,500/yr**

Typical interconnection agreements require a minimum reactive capability that amounts to roughly 1/3d of MFO. In theory, the "nose" of the D-curve is typically not available.

Synchronous machine designs generally have lower VAR withdrawal capability than injection capability.





## Illustrative Example of a 100 MW Combustion Turbine



- VAR injection capability:
  - Q1 at Pmax (100 MW) = 40 MVAR
  - Q2 at Pmin (80 MW) = 45 MVAR
- VAR withdrawal capability:
  - Q3 at Pmax = -33 MVAR
  - Q4 at Pmin = -35 MVAR
- Average(40,45) Average(-33,-35) = 76.5
- Compensation = \$1,000\*76.5 = **\$76,500/yr**

A CT might have a narrower dispatchable range than a steam generator, which might reduce the reactive capability available to PJM.





## Illustrative Example of a Combustion Turbine



w/ Condensing Mode

A synchronous machine generator with "condensing mode" can operate at 0 MW.

- VAR injection capability:
  - Q1 = 40 MVAR
  - Q2 = 50 MVAR
- VAR withdrawal capability:
  - Q3 = -33 MVAR
  - Q4 = -40 MVAR
- Average(40,50) Average(-33,-40) = 81.5
- Compensation = \$1,000\*81.5 = \$81,500/yr





### Illustrative Example of a Solar Plant



- VAR injection capability:
  - Q1 = 33 MVAR
  - Q2 = 45 MVAR
- VAR withdrawal capability:
  - Q3 = -33 MVAR
  - Q4 = -45 MVAR
- Average (33,45) Average (-33,-45) = 78
- Compensation = \$1,000\*78 = \$78,000/yrInverter reactive capability matches power capability (they have a circular D-curve at the inverter terminals), however high impedance between PJM and large solar farm inverters reduces the reactive capability.





Illustrative Example of a Solar Plant

w/ Reactive at Night Capability

- VAR injection capability:
  - Q1 = 33 MVAR
  - Q2 = 45 MVAR
- VAR withdrawal capability:
  - Q3 = -33 MVAR
  - Q4 = -45 MVAR
- Average (33,45) Average (-33,-45) = 78
- Compensation = \$1,000\*78 = \$78,000/yr

Reactive capability at 0 MW at night might be lower than capability at 0 MW during the day (i.e., when dispatched to 0 MW). Therefore, no change vs. previous example.





## Illustrative Example of a Battery



- VAR injection capability:
  - Q1 = 33 MVAR
  - Q2 = 100 MVAR
- VAR withdrawal capability:
  - Q3 = -33 MVAR
  - Q4 = -100 MVAR
- Average(33,100) Average (-33,-100) = 133
- Compensation = \$1,000\*133 = \$133,000/yr

Battery inverters would be located close to the POI, with little impedance to PJM. The full circular inverter capability is therefore available to PJM.





## Illustrative Example of a Solar-Battery Hybrid

(Shared Inverters)

- VAR injection capability:
  - Q1 = 33 MVAR
  - Q2 = 45 MVAR
- VAR withdrawal capability:
  - Q3 = -33 MVAR
  - Q4 = -45 MVAR
- Average (33,45) Average (-33,-45) = 78
- Compensation = \$1,000\*78 = \$78,000/yr

This hypothetical solar-battery hybrid uses the solar inverters to operate the batteries. It is the same as the standalone solar example, except also has charging MW.





## Illustrative Example of New-Technology Wind Plant



- VAR injection capability:
  - Q1 = 33 MVAR
  - Q2 = 45 MVAR
- VAR withdrawal capability:
  - Q3 = -33 MVAR
  - Q4 = -45 MVAR
- Average (33,45) Average (-33,-45) = 78
- Compensation = \$1,000\*78 = \$78,000/yr

New wind generator technology is fully inverterbased, similar to solar. This result is the same as the solar example.





## Illustrative Example of Old-Technology Wind Plant



w/ Full Reactive Capability at All Times

- VAR injection capability:
  - Q1 = 33 MVAR
  - Q2 = 33 MVAR
- VAR withdrawal capability:
  - Q3 = -33 MVAR
  - Q4 = -33 MVAR
- Average (33,33) Average (-33,-33) = 66
- Compensation = \$1,000\*66 = \$66,000/yr

Old wind generator technology is only partly inverter based. They don't use the generators for reactive, instead using dedicated equipment that doesn't vary with power output..





## Illustrative Example of Old-Technology Wind Plant w/ Fixed Power Factor Control Only as-per ISA



- VAR injection capability:
  - Q1 = 33 MVAR
  - Q2 = 0 MVAR
- VAR withdrawal capability:
  - Q3 = -33 MVAR
  - Q4 = -0 MVAR
- Average (33,0) Average (-33,-0) = 33
- Compensation = \$1,000\*33 = \$33,000/yr

This example's dedicated VAR equipment was programmed to only provide reactive capability required by the ISA, which is a fixed power factor that drops with lower MW. This is consistent with the ISA power factor obligation, but does not provide the full capability of the equipment.

