

PJM Interconnection Process Workshop 2

Dominion Energy Virginia Comments | December 11, 2020

Emil Avram – Vice President Business Development | Power Generation

E-Mail: emil.avram@dominionenergy.com

Mobile: (804) 398-0545

Dominion Energy *Company Overview*

- Narrowed focus on regulated and regulated-like businesses
- Premier stateregulated utility operations
- Industry-leading clean energy profile
- Long-term earnings and dividend growth

Aggressively pursuing vision to be the most sustainable energy company in the country

Transformational Change Coming to Virginia

VA Clean Economy Act: Significant Changes to our Electric System Expected

□ VCEA to accelerate renewable energy growth in Virginia

- Establishes a mandatory Renewable Portfolio Standard (RPS) that provides a framework for 100% zero-carbon generation by the end of 2045 with critical customer protections for reliability
- 75% of RECs must come from Virginia facilities starting in 2025

☐ Includes the following requirements of Dominion Energy Virginia:

- Solar/Onshore Wind: 16.1 GW including 1.1 GW of small scale in public interest (not to exceed 3MW) (~65% utility-owned, 35% power purchase agreements). We must petition the VA State Corporation Commission at least:
 - 3,000 MW by end of 2024
 - 6,000 MW by end of 2027 (cumulative value)
 - 10,000 MW by end of 2030 (cumulative value)
 - 16,100 MW by end of 2035 (cumulative value)
- Offshore Wind: 5.2 GW utility-owned/purchased in public interest, including up to 3 GW by 2028
- Energy Storage: 2.7 GW including 800 MW pumped storage in public interest; at least 35% from non-utilities

PJM Utility Scale Development

Active Solar Interconnection Queues

Transformative Grid Planning

Renewable Investments Driving Future Grid Needs

CONTEXT

- Virginia Clean Economy Act mandates renewable generation investments and energy storage on the power grid in Virginia by 2035 and 2045 to comply with RPS requirements.
- Projects able to provide generation supply solutions for RPS compliance face development challenges due to grid limitations and assigned upgrade costs.
- Need to identify future electric transmission solutions to meet the VCEA goals most cost effective to our customers

OPPORTUNITIES

- 1. Begin identifying what the future transmission system would look like in 2035 and 2045 based on where solar, storage and offshore wind injections are expected to occur.
- 2. Develop recommendations to meet future grid needs.
- 3. Develop a holistic programmatic grid upgrade approach that delivers cost effective and operationally efficient solutions.
- 4. Consider building transmission capacity ahead of where new renewable generation will materialize, to minimize upgrade effort and maximize operational efficiency.

Transformative Grid Planning

Planning for the Needs of the 2045 Power Grid

Objective

Create Strategic Grid Planning Processes with a Forward View of 2045 Needs

Current PJM Interconnection Queue Process

Key Aspects

- Looks ahead in six-month increments
- Incremental project-by-project analysis
- Process implemented and improved upon over several years

Pros

Robust, repeatable and understandable process

Cons

- Is a reactive process
- Too many projects in the queue will slow the process
- Limits the long-term view & direction/trend
- Projects remain in the queue for extended periods of time, impacting other projects

Programmatic Approach to Grid Planning

Key Aspects

- Start with the end in mind: 2045
- Consideration of optimal mix of transmission voltages, capacities & technologies
- Coordination of transmission planning with expected renewable development regions

Pros

- Could result in improved customer cost and transmission operational efficiencies
- Create new & clear transmission zones for solar and storage development, with local approvals

Cons

Will require a new stakeholder process and rules to consider this new approach

Transformative Grid Planning

Other Suggestions

Objective

Consider Eliminating Burdensome Processes

- ☐ Eliminate the ability to place generation queue positions in suspension
 - This is tending to clog the queue and required upgrades/planning
 - If you reach the ISA/ICSA process and the timing is not right to enter an agreement and begin the upgrade work, a generator should be required to exit the queue
- ☐ Eliminate the ability to enter two or more queue positions at the same project location / time
 - Evaluate how many current discrete queue positions would be eliminated if this was implemented, before considering
 - While beneficial for generators in assessing where network upgrades are triggered, if it is slowing the process, it may be worth considering this